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Why study algorithms?

▶ Compulsory
▶ To be a smart programmer
▶ To be more intelligent
▶ The way to research

......
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A Google Interview Question

▶ You are given 2 identical eggs
and have access to a 100-story
building.

▶ Eggs may break if dropped from
the first floor or may not even
break if dropped from 100th floor.

▶ You need to figure out the
highest floor an egg can be
dropped without breaking.

▶ You are allowed to break 2 eggs.
How many drops you need to
make.
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A Perplexing Polynomial Puzzle

▶ Imagine that you are given a black box . It has a slot
where you can put any real number, after you place one, it
makes some sound, vibrates a bit, and returns a value.

▶ Inside the box is a secret polynomial p(x): if you put in x,
you get out p(x).

▶ All the coefficients of the polynomial are natural numbers.
▶ Your job is to find the exact coefficients of the polynomial.
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The Secretary Problem

We have n candidates (perhaps applicants for a job or possible
marriage partners). Our goal is choose the very best candidate.
The assumptions are
▶ Candidates can be totally ordered from best to worst with

no ties.
▶ Candidates arrive sequentially in random order.
▶ We can only determine the relative ranks of the candidates

as they arrive. We cannot observe the absolute ranks.
▶ After each interview we must either immediately accept or

reject the applicant. Once a candidate is rejected, she can
not be recalled. Once a candidate is accepted, we stopped
interviewing.

▶ The number of candidates n is known.
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Candies for Children

There are n children standing in a line. Each child is assigned a
rating value given in the integer array ratings.
You are giving candies to these children subjected to the
following requirements:
▶ Each child must have at least one candy.
▶ Children with a higher rating get more candies than their

neighbors.
Return the minimum number of candies you need to have to
distribute the candies to the children.
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Erect the Fence

▶ You are given an array trees where trees[i] = [xi,yi]
represents the location of a tree in the garden.

▶ You are asked to fence the entire garden using the
minimum length of rope as it is expensive. The garden is
well fenced only if all the trees are enclosed.

▶ Return the coordinates of trees that are exactly located on
the fence perimeter.
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Another question

▶ Suppose you have an N×N
matrix of positive and negative
integers.

▶ Write some code that finds the
sub-matrix with the maximum
sum of its elements.
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Another question

▶ Suppose you have given N companies, and we want to
eventually merge them into one big company.

▶ How many ways are there to merge? Assume that each
time you can merge two companies into one new company.
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Another question

▶ You are given a small sorted list of numbers, and a very
very long sorted list of numbers - so long that it had to be
put on a disk in different blocks.

▶ How would you find those short list numbers in the bigger
one?
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Another question

▶ You are given with three sorted arrays (in ascending order)
▶ you are required to find a triplet (one element from each

array) such that distance is minimum.
▶ If a[i],b[j] and c[k] are three elements then

distance = max(|a[i]−b[j]|, |a[i]− c[k]|, |b[j]− c[k]|).
▶ Please give a solution in O(n) time complexity.
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Another question

▶ Given an array whose elements are sorted, return the index
of the first occurrence of a specific integer.

▶ Do this in sub-linear time.
▶ Do not just go through each element searching for that

element.
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Course Goals

▶ Use O, Ω, and Θ notation to give asymptotic upper, lower,
and tight bounds on time and space complexity of
algorithms.

▶ Determine the time complexity of simple algorithms,
deduce the recurrence relations that describe the time
complexity of recursively defined algorithms, and solve
simple recurrence relations.

▶ Design algorithms using the brute-force, greedy, dynamic
programming, divide-and-conquer, branch and bound
strategies.

▶ Design algorithms using at least one other algorithmic
strategy from the list of topics for this unit.
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Course Goals, Cont.

▶ Use and implement the fundamental abstract data types –
specifically including hash tables, binary search trees, and
graphs – necessary to solve algorithmic problems efficiently.

▶ Solve problems using techniques learned in the design of
sequential search, binary search, O(N log N) sorting
algorithms, and fundamental graph algorithms, including
depth-first and breadth-first search, single-source and
all-pairs shortest paths, and at least one minimum
spanning tree algorithm.

▶ Demonstrate the following abilities: to evaluate algorithms,
to select from a range of possible options, to provide
justification for that selection, and to implement the
algorithm in simple programming contexts.
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Course Goals, Cont.

▶ Communicate theoretical and experimental analyses of a
set of algorithms (i.e. sorting) in a lab report format.
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Analysis of Algorithms
The theoretical study of computer-program performance and
resource usage. What’s more important than performance?
▶ correctness

▶ functionality
▶ reliability
▶ modularity
▶ maintainability
▶ robustness
▶ user-friendliness
▶ programmer time
▶ simplicity
▶ extensibility
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Why study algorithms and performance?

▶ Algorithms help us to understand scalability.
▶ Performance often draws the line between what is feasible

and what is impossible.
▶ Algorithmic mathematics provides a language for talking

about program behavior.
▶ Performance is the currency of computing.
▶ The lessons of program performance generalize to other

computing resources.
▶ Speed is fun!
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The Problem of Sorting
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The Problem of Sorting

Input: a sequence A = ⟨a1,a2,a3, · · · ,an−1,an⟩ of n numbers.
Output: a permutation ⟨a′1,a′2,a′3, · · · ,a′n−1,a′n⟩ of the sequence
A such that

a′1 ≤ a′2 ≤ a′3 ≤ ·· · ≤ a′n−1 ≤ a′n
An example:

Input : 8 2 4 9 3 6
Output : 2 3 4 6 8 9
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Insertion Sort

The pseudocode for insertion sorting:
InsertionSort(A,n) Note1

1: for j← 2 to n do
2: key←A[j]
3: i← j−1
4: while i > 0 and A[i]> key do
5: A[i+1]←A[i]
6: i← i−1
7: A[i+1] = key

Loop Invariant: A[1 · · · j−1] is sorted.

1Here A is an array of n elements.
Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 21 / 48
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Insertion Sort: An example

Figure: The operation of INSERTION-SORT on the array A = 5, 2,
4, 6, 1, 3
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Running Time Analysis

▶ The running time depends on the input: an already sorted
sequence is easier to sort.

▶ Parameterize the running time by the size of the input,
since short sequences are easier to sort than long ones.

▶ Generally, we seek upper bounds on the running time,
because everybody likes a guarantee.
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Different Analysis Approaches

▶ Worst-case: (usually)
T(n) = maximum time of algorithm on any input of size n.

▶ Average-case: (sometimes)
T(n) = expected time of algorithm over all inputs of size n
by assuming that the input follow some distribution.
Need assumption of statistical distribution of inputs (such
as random uniform distribution or Poisson distribution).

▶ Best-case: (bogus)
Cheat with a slow algorithm that works fast on some input.
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Different Analysis Approaches

▶ Smooth analysis: (newest approach)
▶ For any instance of the problem, analyze the time

complexity by assuming that the input can be perturbed
with small perturbation.

▶ First example: Simplex method that solves linear
programming has polynomial time smooth complexity
(while its worst case complexity is exponential).
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Different Analysis Approaches

▶ Smooth analysis: (newest approach)
▶ If the smoothed complexity of an algorithm is low, then it is

unlikely that the algorithm will take a long time to solve
practical instances whose data are subject to slight noises
and imprecisions.

▶ Smoothed complexity results are strong probabilistic
results, in every large enough neighbourhood of the space of
inputs, most inputs are easily solvable.
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Different Analysis Approaches

▶ Smooth analysis: (newest approach)
▶ Smoothed analysis generalizes both worst-case and

average-case analysis and inherits strengths of both.
▶ It is intended to be much more general than average-case

complexity, while still allowing low complexity bounds to be
proven.
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Machine-independent time

What is insertion sort’s worst-case time?
It depends on the speed of our computer:
▶ relative speed (on the same machine),
▶ absolute speed (on different machines).

BIG IDEA:
Ignore machine-dependent constants.
Look at growth of T(n) as n→ ∞.

Asymptotic Analysis
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Further Assumptions

Constant time operations
▶ plus, minus, times, division
▶ load, store, copy and so on
▶ control operations: branch, subroutine call and so on.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 29 / 48



Outline
Why Study Algorithms?

Sorting
Running Time Analysis

Θ-Notation

Mathematics:

Θ(g(n)) = {f(n) | there exist positive constants c1 and c2 and

integer n0 such that 0≤ c1g(n)≤ f(n)≤ c2g(n) for all n≥ n0}

Engineering:
▶ Drop low-order terms; ignore leading constants
▶ Example: 3n3 +90n2−5n+2006 = Θ(n3).
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O-Notation

Mathematics:

O(g(n)) = {f(n) | there exist positive constants c2 and

integer n0 such that f(n)≤ c2g(n) for all n≥ n0}

Engineering:
▶ Drop low-order terms; ignore leading constants
▶ Example: 3n3 +90n2−5n+2006 = O(n3), or O(n4).
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Ω-Notation

Mathematics:

Ω(g(n)) = {f(n) | there exist positive constants c1 and

integer n0 such that 0≤ c1g(n)≤ f(n), for all n≥ n0}

Engineering:
▶ Drop low-order terms; ignore leading constants
▶ Example: 3n3 +90n2−5n+2006 = Ω(n3), or Ω(n2).
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Asymptotic performance

When n is large enough, a Θ(n logn) algorithm always beats a
Θ(n2) algorithm.
▶ We should not always ignore the asymptotically slower

algorithms, however.
▶ Real-world design situations often call for a careful

balancing of engineering objectives.
▶ Asymptotic analysis is a useful tool to help to structure our

thinking.
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Insertion sort analysis

InsertionSort(A,n) Note2

for j← 2 to n do
=⇒ Loop n-1 times
key←A[j]
i← j−1
while i > 0 and A[i]> key do
=⇒ Loop j/2 times on average, Loop j times in worst
case.
A[i+1]←A[i]
i← i−1

A[i+1] = key

2Here A is an array of n elements.
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Insertion sort analysis

Worst Case: input reversely sorted

T(n) =
n
∑
j=2

Θ(j) = Θ(n2)

Average-case: All permutations equally likely.

T(n) =
n
∑
j=2

Θ(j/2) = Θ(n2)

Is Insertion sorting a fast sorting algorithm?
▶ Moderately so, for small n.

▶ Not at all for large n.
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More on Average-case Analysis for Insertion Sort

Expected Value: The expected value of a random variable X on
a probability space (S,p) is the sum

E(X) = ∑
s∈S

X(s)p(s),

where X(s) is the value of variable X in state s and p(s) is the
probability that state s happens.
Here we assume that the space S is composed of discrete events.
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Expected Value Example

For example, an American roulette wheel has 38 equally
possible outcomes. A winning bet placed on a single number
pays 35-to-1 (this means that you are paid 35 times your bet
and your bet is returned, so you get 36 times your bet). So
considering all 38 possible outcomes, the expected value of the
profit resulting from a $1 bet on a single number is:(

−$1× 37
38

)
+

(
$35× 1

38

)
,

which is about -$0.0526. Therefore one expects, on average, to
lose over five cents for every dollar bet, and the expected value
of a one dollar bet is $0.9474.
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Linearity of Expectation

Theorem: Let X1 and X2 be random variables (need to be the
same probability space (S,p)). Then
E(X1 +X2) = E(X1)+E(X2).
Example: When two fair dice are rolled, here are both
calculations for the expected total value:

E(X1 +X2) = E(X1)+E(X2) =
7
2 +

7
2 = 7

E(X1 +X2) =
6
∑
j=1

6
∑
i=1

(i+ j) · 1
36 = 7

Notice here E(X) = ∑6
i=1 i · 1

6 = 7/2.
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Average Case Computational Complexity

Compute the expected value of the random variable that counts
how many operations are executed by the algorithm.
Xj is the random variable equal to the number of comparisons
used to insert ai into the proper position after the first j−1
elements have been sorted. Clearly, we have X1 = 0, and

1≤Xj ≤ j−1

Let X denote the total number of comparisons used to sort the
array. Then

X = X1 +X2 +X3 + · · ·+Xn

E(X) = E(X1)+E(X2)+E(X3)+ · · ·+E(Xn)
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For random data, it is equally likely the jth element could go in
any sorted position from 1 to j−1. Thus,

p(k comparisons) = 1/(j−1)

Then

E(Xi) =
j−1

∑
k=1

k ·p(k comparisons) =
j−1

∑
k=1

k
j−1 = j/2

Then
E(X) =

n
∑
j=2

E(Xj) =
n
∑
j=2

j
2 =

(n−1)(n+2)
4
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What do we mean exactly by random data in our previous
analysis?

a1,a2, · · · ,aj · · · ,an−1,an is a random input if each of the possible
n! permutations is equally possible.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 41 / 48



Outline
Why Study Algorithms?

Sorting
Running Time Analysis

What do we mean exactly by random data in our previous
analysis?

a1,a2, · · · ,aj · · · ,an−1,an is a random input if each of the possible
n! permutations is equally possible.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 41 / 48



Outline
Why Study Algorithms?

Sorting
Running Time Analysis

Merge Sort Idea

▶ divide and conquer (and combine) approach, recursive
algorithm

▶ basic step, you can merge two sorted lists of total length n
in Θ(n) linear time

▶ second key idea, a list of length one element is sorted

We will see many algorithms that are essentially divide and
conquer. The key steps of these algorithms are
(1) [Divide]: divide the problem into smaller sub-problems
(2) [Conquer]: solve each sub-problems
(3) [Merge]: merge the solutions from sub-problems to form a
solution for the problem.
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Merge Sort

MergeSort(A,p,r)
1: if p < r then
2: MergeSort(A,p,⌊p+r

2 ⌋)
3: MergeSort(A,⌊p+r

2 ⌋+1,r)
4: Merge the two sorted lists.

It is a recursive algorithm. The Key subroutine is Merge.
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Merge Two Sorted Arrays
Merge(A,B,C) Note3

1: i← 1, j← 1, k← 1,DONE← FALSE
2: while not DONE do
3: while j≤ nB and A[i]≥ B[j] do
4: C[k]← B[j],k++, j++
5: DONE← (j > nB)
6: if not DONE then
7: C[k]←A[i],k++, i++
8: DONE← (i > nA)
9: while i≤ nA do

10: C[k]←A[i],k++, i++
11: while j≤ nB do
12: C[k]← B[j],k++, j++

3Here A and B are sorted arrays of nA and nB sizes, C stores the final
sorted result
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Sentinel Card

To avoid having to check whether either input pile is empty in
each basic step, we can place on the bottom of each pile a
sentinel card, which contains a special value ∞ that we use to
simplify our code.
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Merge Sort Time Complexity Analysis

Assume that the input array has size n. Let T(n) be the time to
sort A using merge sort.

MergeSort(A,p,r)

=⇒ T(n)

1: if p < r then
2: MergeSort(A,p,⌊p+r

2 ⌋)

=⇒ T(n/2)

3: MergeSort(A,⌊p+r
2 ⌋+1,r)

=⇒ T(n/2)

4: Merge the two sorted lists.

=⇒ c ·n = Θ(n)

Thus, we have
T(n) = 2T(n/2)+ c ·n
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Recurrence for merge sort

Thus we have the following recurrence relations for T(n):

T(n) =
{

Θ(1) if n = 1
2T(n/2)+ c ·n if n > 1

▶ Sloppiness: The actual formula should be
T(n) = T(⌊n/2⌋)+T(⌈n/2⌉)+ c ·n. But it turns out not to
matter asymptotically.

▶ We shall usually omit stating the base case when
T(n) = Θ(1) for sufficiently small n, but only when it has
no effect on the asymptotic solution to the recurrence.

▶ We will provide several ways to find a good upper bound
on T(n) (see CLRS for more details).
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Time complexity of merge sort

Theorem: The asymptotic time complexity for merge sorting is
Θ(n logn).

Approaches:
▶ Recursion tree
▶ Substitution method (guess, verify, solve)
▶ Master Theorem
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