
Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Introduction to Algorithms
Topic 2 : Asymptotic Mark and Recursive Equation

XiangYang Li and Haisheng Tan

School of Computer Science and Technology
University of Science and Technology of China (USTC)

Fall Semester 2024

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 1 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Outline of Topics

1 Asymptotic Notation: O-, Ω- and Θ-otation
O-otation
Ω-otation
Θ-otation
Other Asymptotic Notations
Comparing Functions

2 Standard Notations and Common Functions

3 Recurrences
Substitution Method
Recursion Tree
Master Method

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 2 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

O-otation
Ω-otation
Θ-otation
Other Asymptotic Notations
Comparing Functions

Table of Contents

1 Asymptotic Notation: O-, Ω- and Θ-otation
O-otation
Ω-otation
Θ-otation
Other Asymptotic Notations
Comparing Functions

2 Standard Notations and Common Functions

3 Recurrences
Substitution Method
Recursion Tree
Master Method

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 3 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

O-otation
Ω-otation
Θ-otation
Other Asymptotic Notations
Comparing Functions

Asymptotic Notation: O−notation

O-notation: upper bounds
We write f(n) = O(g(n)) if there exist constants c > 0,n0 > 0
such that 0 ≤ f(n)≤ cg(n) for all n ≥ n0.

Example: 2n2 = O(n3) (c = 1,n0 = 2)

functions,
not values funny, “one-way” equality

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 4 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

O-otation
Ω-otation
Θ-otation
Other Asymptotic Notations
Comparing Functions

Asymptotic Notation: O−notation

O-notation: upper bounds
We write f(n) = O(g(n)) if there exist constants c > 0,n0 > 0
such that 0 ≤ f(n)≤ cg(n) for all n ≥ n0.

Example: 2n2 = O(n3) (c = 1,n0 = 2)

functions,
not values funny, “one-way” equality

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 4 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

O-otation
Ω-otation
Θ-otation
Other Asymptotic Notations
Comparing Functions

Asymptotic Notation: O−notation

O-notation: upper bounds
We write f(n) = O(g(n)) if there exist constants c > 0,n0 > 0
such that 0 ≤ f(n)≤ cg(n) for all n ≥ n0.

Example: 2n2 = O(n3) (c = 1,n0 = 2)

functions,
not values

funny, “one-way” equality

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 4 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

O-otation
Ω-otation
Θ-otation
Other Asymptotic Notations
Comparing Functions

Asymptotic Notation: O−notation

O-notation: upper bounds
We write f(n) = O(g(n)) if there exist constants c > 0,n0 > 0
such that 0 ≤ f(n)≤ cg(n) for all n ≥ n0.

Example: 2n2 = O(n3) (c = 1,n0 = 2)

functions,
not values funny, “one-way” equality

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 4 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

O-otation
Ω-otation
Θ-otation
Other Asymptotic Notations
Comparing Functions

Set Definition of O-notation

O(g(n)) = {f(n) : there exist constants c > 0,n0 > 0 such that
0 ≤ f(n)≤ cg(n) for all n ≥ n0}.

Example: 2n2 ∈ O
(
n3)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 5 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

O-otation
Ω-otation
Θ-otation
Other Asymptotic Notations
Comparing Functions

Set Definition of O-notation

O(g(n)) = {f(n) : there exist constants c > 0,n0 > 0 such that
0 ≤ f(n)≤ cg(n) for all n ≥ n0}.

Example: 2n2 ∈ O
(
n3)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 5 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

O-otation
Ω-otation
Θ-otation
Other Asymptotic Notations
Comparing Functions

Macro Substitution

Convention: A set in a formula represents an anonymous
function in the set.

Example: f(n) = n3 +O
(
n2)

means
f(n) = n3 +h(n)
for some h(n) ∈ O

(
n2).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 6 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

O-otation
Ω-otation
Θ-otation
Other Asymptotic Notations
Comparing Functions

Asymptotic Notation: Ω-notation

O-notation is an upper-bound notation.
The Ω-notation provides a lower bound.

Set definition of Ω-notation
Ω(g(n)) = {f(n) : there exist constants c > 0,n0 > 0 such that

0 ≤ c ·g(n)≤ f(n) for all n ≥ n0}

Example:
√

n = Ω(lgn)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 7 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

O-otation
Ω-otation
Θ-otation
Other Asymptotic Notations
Comparing Functions

Asymptotic Notation: Ω-notation

O-notation is an upper-bound notation.
The Ω-notation provides a lower bound.

Set definition of Ω-notation
Ω(g(n)) = {f(n) : there exist constants c > 0,n0 > 0 such that

0 ≤ c ·g(n)≤ f(n) for all n ≥ n0}

Example:
√

n = Ω(lgn)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 7 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

O-otation
Ω-otation
Θ-otation
Other Asymptotic Notations
Comparing Functions

Asymptotic Notation: Θ-notation

Θ-notation: tight bounds
We write f(n) = Θ(g(n)) if there exist constants
c1 > 0,c2 > 0,n0 > 0 such that c2g(n)≥ f(n)≥ c1g(n)≥ 0 for all
n ≥ n0.

Θ(g(n)) = O(g(n))∩Ω(g(n))

Example: 1
2n2 −2n = Θ

(
n2)

Θ(n0) or Θ(1)

Theorem:
The leading constant and low order terms do not matter.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 8 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

O-otation
Ω-otation
Θ-otation
Other Asymptotic Notations
Comparing Functions

Asymptotic Notation: Θ-notation

Θ-notation: tight bounds
We write f(n) = Θ(g(n)) if there exist constants
c1 > 0,c2 > 0,n0 > 0 such that c2g(n)≥ f(n)≥ c1g(n)≥ 0 for all
n ≥ n0.

Θ(g(n)) = O(g(n))∩Ω(g(n))

Example: 1
2n2 −2n = Θ

(
n2)

Θ(n0) or Θ(1)

Theorem:
The leading constant and low order terms do not matter.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 8 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

O-otation
Ω-otation
Θ-otation
Other Asymptotic Notations
Comparing Functions

Asymptotic Notation: Θ-notation

Θ-notation: tight bounds
We write f(n) = Θ(g(n)) if there exist constants
c1 > 0,c2 > 0,n0 > 0 such that c2g(n)≥ f(n)≥ c1g(n)≥ 0 for all
n ≥ n0.

Θ(g(n)) = O(g(n))∩Ω(g(n))

Example: 1
2n2 −2n = Θ

(
n2)

Θ(n0) or Θ(1)

Theorem:
The leading constant and low order terms do not matter.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 8 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

O-otation
Ω-otation
Θ-otation
Other Asymptotic Notations
Comparing Functions

Asymptotic Notation: Θ-notation

Θ-notation: tight bounds
We write f(n) = Θ(g(n)) if there exist constants
c1 > 0,c2 > 0,n0 > 0 such that c2g(n)≥ f(n)≥ c1g(n)≥ 0 for all
n ≥ n0.

Θ(g(n)) = O(g(n))∩Ω(g(n))

Example: 1
2n2 −2n = Θ

(
n2)

Θ(n0) or Θ(1)

Theorem:
The leading constant and low order terms do not matter.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 8 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

O-otation
Ω-otation
Θ-otation
Other Asymptotic Notations
Comparing Functions

Graphic Examples of the Θ,O,Ω

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 9 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

O-otation
Ω-otation
Θ-otation
Other Asymptotic Notations
Comparing Functions

Other Asymptotic Notations

o-notation
o(g(n)) = {f(n): for all c > 0, there exist constants n0 > 0 such
that 0 ≤ f(n)< cg(n) for all n ≥ n0}.
Other equivalent definition lim

n→∞
f(n)
g(n) = 0.

ω-notation
ω(g(n)) = {f(n): for all c > 0, there exist constants n0 > 0 such
that 0 ≤ cg(n)< f(n) for all n ≥ n0}.
Other equivalent definition lim

n→∞
f(n)
g(n) = ∞

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 10 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

O-otation
Ω-otation
Θ-otation
Other Asymptotic Notations
Comparing Functions

A Helpful Analogy

f(n) = O(g(n)) is similar to f(n)≤ g(n).

f(n) = o(g(n)) is similar to f(n)< g(n).

f(n) = Θ(g(n)) is similar to f(n) = g(n).

f(n) = Ω(g(n)) is similar to f(n)≥ g(n).

f(n) = ω(g(n)) is similar to f(n)> g(n).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 11 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

O-otation
Ω-otation
Θ-otation
Other Asymptotic Notations
Comparing Functions

Transitivity

f(n) = Θ(g(n)) and g(n) = Θ(h(n)) imply f(n) = Θ(h(n)).

f(n) = O(g(n)) and g(n) = O(h(n)) imply f(n) = O(h(n)).

f(n) = Ω(g(n)) and g(n) = Ω(h(n)) imply f(n) = Ω(h(n)).

f(n) = o(g(n)) and g(n) = o(h(n)) imply f(n) = o(h(n)).

f(n) = ω(g(n)) and g(n) = ω(h(n)) imply f(n) = ω(h(n)).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 12 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

O-otation
Ω-otation
Θ-otation
Other Asymptotic Notations
Comparing Functions

Reflexivity

f(n) = Θ(f(n))

f(n) = O(f(n))

f(n) = Ω(f(n))

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 13 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

O-otation
Ω-otation
Θ-otation
Other Asymptotic Notations
Comparing Functions

Symmetry & Transpose Symmetry

Symmetry
f(n) = Θ(g(n)) if and only if g(n) = Θ(f(n)).

Transpose Symmetry
f(n) = O(g(n)) if and only if g(n) = Ω(f(n)).
f(n) = o(g(n)) if and only if g(n) = ω(f(n)).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 14 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

O-otation
Ω-otation
Θ-otation
Other Asymptotic Notations
Comparing Functions

Non-completeness

Non-completeness of O, Ω, and Θ notations
For real numbers a and b, we know that either a < b, or a = b,
or a > b is true.

However, for two functions f(n) and g(n), it is possible that
neither of the following is true: f(n) = O(g(n)), or
f(n) = Θ(g(n)), or f(n) = Ω(g(n)). For example, f(n) = n, and
g(n) = n1−sin(nπ/2).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 15 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Table of Contents

1 Asymptotic Notation: O-, Ω- and Θ-otation
O-otation
Ω-otation
Θ-otation
Other Asymptotic Notations
Comparing Functions

2 Standard Notations and Common Functions

3 Recurrences
Substitution Method
Recursion Tree
Master Method

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 16 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Floors and Ceilings

Floor
For any real number x, we denote the greatest integer less than
or equal to x by ⌊x⌋ (read “the floor of x”)

Ceiling
For any real number x, we denote the least integer greater than
or equal to x by ⌈x⌉ (read “the ceiling of x”)

x−1 < ⌊x⌋ ≤ x ≤ ⌈x⌉ ≤ x+1.
For any integer n, ⌈n/2⌉+ ⌊n/2⌋= n.

For any real number x ≥ 0 and integers a,b > 0,
⌈ ⌈x/a⌉

b ⌉= ⌈ x
ab⌉, ⌊

⌊x/a⌋
b ⌋= ⌊ x

ab⌋, ⌈
a
b⌉ ≤

a+(b−1)
b , ⌊ a

b⌋ ≥
a−(b−1)

b ,

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 17 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Modular Arithmetic

Mod
For any integer a and any positive integer n, the value a mod n
is the remainder (or residue) of the quotient a/n:

a mod n = a−n⌊a/n⌋.

Equivalent
If (a mod n) = (b mod n), we write (a ≡ b) mod n and say that
a is equivalent to b, modulo n.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 18 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Exponentials

∀ a > 0, a0 = 1; (am)n = (an)m = amn; aman = am+n

When a > 1, limn→∞
nb

an = 0. That is, nb = o(an).

For all real x, ex = 1+x+ x2

2! +
x3

3! + ...= ∑∞
i=0

xi

i!
When |x| ≤ 1, 1+x ≤ ex ≤ 1+x+x2

When x → 0, ex = 1+x+Θ(x2)
For all x, limn→∞(1+ x

n)
n = ex

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 19 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Logarithms

lgn = log2 n; lnn = loge n; lgk n = (lgn)k; lg lgn = lg(lgn)

For all real a,b,c > 0, and n,
a = blogb a; logc(ab) = logc a+ logc b;
logb an = n logb a; logb a = lga

lgb ; alogb c = clogb a

When a > 0, limn→∞
lgb n

(2a)lgn = limn→∞
lgb n
na = 0. That is,

lgb n = o(na).

When |x| ≤ 1, ln(1+x) = x− x2

2 + x3

3 − x4

4 + x5

5 − ...
For x >−1, x

1+x ≤ ln(1+x)≤ x

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 20 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Factorials

n! =
{

1 if n = 0
n · (n−1)! if n > 0

n! ≤ nn. A better bound:

Stirling’s approximation
n! =

√
2πn(n

e)
n(1+Θ(1

n))

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 21 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Functional iteration

functional iteration
We use the notation f(i)(n) to denote the function f(n)

iteratively applied i times to an initial value of n. Formally, let
f(n) be a function over the reals. For non-negative integers i, we

recursively define

f(i)(n) =
{

n if i = 0,
f(f(i−1)(n)) if i > 0,

Example: if f(n) = 2n, then f(i)(n) = 2in.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 22 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

The iterated logarithm function

We use the notation lg∗n to denote the iterated logarithm.
lg∗n = min{i ≥ 0 : lg(i)n ≤ 1}.

Example:
lg∗ 2 = 1,
lg∗ 4 = 2,
lg∗ 16 = 3,

lg∗(265536) = 5.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 23 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Fibonacci Numbers

Fibonacci numbers
We define the Fibonacci numbers by the following recurrence:

F0 = 0,
F1 = 1,

Fi = Fi−1 +Fi−2, for i ≥ 2.

Each Fibonacci number is the sum of the two previous ones,
yielding the sequence

0,1,1,2,3,5,8,13,21,34,55, ...

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 24 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Table of Contents

1 Asymptotic Notation: O-, Ω- and Θ-otation
O-otation
Ω-otation
Θ-otation
Other Asymptotic Notations
Comparing Functions

2 Standard Notations and Common Functions

3 Recurrences
Substitution Method
Recursion Tree
Master Method

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 25 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Solving Recurrences

Recurrences go hand in hand with the divide-and-conquer
paradigm. A recurrence is an equation or inequality that
describes a function in terms of its value on smaller inputs.
Three methods for solving recurrences

substitution method: guess a bound and use mathematical
induction to prove the guess correct.
recursion-tree method: converts the recurrence into a tree
and use techniques for bounding summations.
master method: provides bounds of the form
T(n) = a ·T(n

b)+ f(n).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 26 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Substitution Method

The most general method
1. Guess the form of the solution.
2. Solve for constants.

This method only works if we can guess the form of the
answer.
The method can be used to establish either upper or lower
bounds on a recurrence.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 27 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Example of Substitution

Example: T(n) = 4T(n/2)+n
Assume that T(1) = Θ(1).
Guess T(n) = O(n3). (Note that if we guess Θ, we need
prove O and Ω separately.)
Assume that T(k)≤ ck3 for k < n and some constant c > 0.
Prove T(n)≤ cn3 by induction.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 28 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Example of Substitution

T(n) = 4T(n/2)+n
≤ 4c(n/2)3 +n
= (c/2)n3 +n
= cn3 − ((c/2)n3 −n)
≤ cn3

whenever (c/2)n3 −n ≥ 0, for example, if c ≥ 2 and n ≥ 1.

desired − residual
desired

residual

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 29 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Example (Continued)

We must also handle the initial conditions, that is, ground
the induction with base cases.
Base: T(n) = Θ(1) for all n < n0, where n0 is a suitable
constant.
For 1 ≤ n < n0, we have “Θ(1)” ≤ cn3, if we pick c big
enough.

This bound is not tight!

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 30 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Example (Continued)

We must also handle the initial conditions, that is, ground
the induction with base cases.
Base: T(n) = Θ(1) for all n < n0, where n0 is a suitable
constant.
For 1 ≤ n < n0, we have “Θ(1)” ≤ cn3, if we pick c big
enough.

This bound is not tight!

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 30 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

A Tighter Upper Bound?

We shall prove that T(n) = O(n2).

Assume that T(k)≤ ck2 for k < n :

T(n) = 4T(n/2)+n
≤ 4c(n/2)2 +n
= cn2 +n
= O(n2) Wrong! We must prove the I.H.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 31 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

A Tighter Upper Bound?

We shall prove that T(n) = O(n2).

Assume that T(k)≤ ck2 for k < n :

T(n) = 4T(n/2)+n
≤ 4c(n/2)2 +n
= cn2 +n
= O(n2)

Wrong! We must prove the I.H.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 31 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

A Tighter Upper Bound?

We shall prove that T(n) = O(n2).

Assume that T(k)≤ ck2 for k < n :

T(n) = 4T(n/2)+n
≤ 4c(n/2)2 +n
= cn2 +n
= O(n2) Wrong! We must prove the I.H.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 31 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

A Tighter Upper Bound?

We shall prove that T(n) = O(n2).

Assume that T(k)≤ ck2 for k < n :

T(n) = 4T(n/2)+n
≤ 4c(n/2)2 +n
= cn2 +n
= O(n2)

= cn2 − (−n)
≤ cn2

Wrong! We must prove the I.H.
[desired − residual]

for no choice of c > 0. Lose!

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 32 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

A Tighter Upper Bound!

IDEA: Strengthen the inductive hypothesis.
Subtract a low-order term.
Inductive hypothesis: T(k)≤ c1k2 − c2k for k < n

T(n) = 4T(n/2)+n
≤ 4(c1(n/2)2 − c2(n/2))+n
= c1n2 −2c2n+n
= c1n2 − c2n− (c2n−n)
≤ c1n2 − c2n if c2 ≥ 1

Pick c1 big enough to handle the initial conditions.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 33 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

A Tighter Upper Bound!

IDEA: Strengthen the inductive hypothesis.
Subtract a low-order term.
Inductive hypothesis: T(k)≤ c1k2 − c2k for k < n

T(n) = 4T(n/2)+n
≤ 4(c1(n/2)2 − c2(n/2))+n
= c1n2 −2c2n+n
= c1n2 − c2n− (c2n−n)
≤ c1n2 − c2n if c2 ≥ 1

Pick c1 big enough to handle the initial conditions.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 33 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

A Tighter Lower Bound

We shall prove that T(n) = Ω(n2).

Assume that T(k)≥ ck2 for k < n, and for some chosen constant
c.

T(n) = 4T(n/2)+n
≥ 4c(n/2)2 +n
= cn2 +n
≥ cn2

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 34 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

A Tighter Lower Bound

We shall prove that T(n) = Ω(n2).

Assume that T(k)≥ ck2 for k < n, and for some chosen constant
c.

T(n) = 4T(n/2)+n
≥ 4c(n/2)2 +n
= cn2 +n
≥ cn2

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 34 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Recursion-tree Method

A recursion tree models the costs (time) of a recursive
execution of an algorithm.
The recursion-tree method can be unreliable.
The recursion tree method is good for generating guesses
for the substitution method.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 35 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Example of Recursion Tree

Solve T(n) = T(n/4)+T(n/2)+n2:

T(n)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 36 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Example of Recursion Tree

Solve T(n) = T(n/4)+T(n/2)+n2:

n2

T(n/4) T(n/2)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 37 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Example of Recursion Tree

Solve T(n) = T(n/4)+T(n/2)+n2:

n2

(n/4)2 (n/2)2

T(n/16) T(n/8) T(n/8) T(n/4)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 38 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Example of Recursion Tree

Solve T(n) = T(n/4)+T(n/2)+n2:

n2

(n/4)2 (n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

Θ(1)

n2
5
16n2

25
256n2

...

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 39 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Example of Recursion Tree

Solve T(n) = T(n/4)+T(n/2)+n2:

n2

(n/4)2 (n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

Θ(1)

n2

5
16n2

25
256n2

...

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 39 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Example of Recursion Tree

Solve T(n) = T(n/4)+T(n/2)+n2:

n2

(n/4)2 (n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

Θ(1)

n2
5
16n2

25
256n2

...

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 39 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Example of Recursion Tree

Solve T(n) = T(n/4)+T(n/2)+n2:

n2

(n/4)2 (n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

Θ(1)

n2
5
16n2

25
256n2

...

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 39 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Example of Recursion Tree

Solve T(n) = T(n/4)+T(n/2)+n2:

n2

(n/4)2 (n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

Θ(1)

n2
5
16n2

25
256n2

...

Total= n2(1+ 5
16 +(5

16)
2
+(5

16)
3
+ · · ·) = Θ(n2)

(geometric series)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 40 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

The Master Method

Master method
The master method applies to recurrences of the form

T(n) = aT(
n
b)+ f(n)

where a ≥ 1, b > 1, and f is asymptotically positive.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 41 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Three Common Cases

Compare f(n) with nlogb a:
1. f(n) = O

(
nlogb a−ε) for some constant ε > 0

f(n) grows polynomially slower than nlogb a (by an nε factor).
Solution: T(n) = Θ

(
nlogb a).

2. f(n) = Θ
(
nlogb a lgk n

)
for some constant k ≥ 0

f(n) and nlogb a lgk n grow at similar rates.
Solution: T(n) = Θ

(
nlogb a lgk+1 n

)
.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 42 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Three Common Cases

Compare f(n) with nlogb a:
1. f(n) = O

(
nlogb a−ε) for some constant ε > 0

f(n) grows polynomially slower than nlogb a (by an nε factor).
Solution: T(n) = Θ

(
nlogb a).

2. f(n) = Θ
(
nlogb a lgk n

)
for some constant k ≥ 0

f(n) and nlogb a lgk n grow at similar rates.
Solution: T(n) = Θ

(
nlogb a lgk+1 n

)
.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 42 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Three Common Cases

Compare f(n) with nlogb a:
3. f(n) = Ω

(
nlogb a+ε) for some constant ε > 0.

f(n) grows polynomially faster than nlogb a (by an nε factor),
and f(n) satisfies the regularity condition that af(n/b)≤ cf(n)
for some constant c < 1 and all sufficiently large n.
Solution: T(n) = Θ(f(n)).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 43 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Examples

Ex. T(n) = 4T(n/2)+n
a = 4,b = 2 ⇒ nlogb a = n2; f(n) = n.
Case 1: f(n) = O

(
n2−ε) for ε = 1

∴ T(n) = Θ
(
n2).

Ex. T(n) = 4T(n/2)+n2

a = 4,b = 2 ⇒ nlogb a = n2; f(n) = n2.
Case 2: f(n) = Θ

(
n2lg0n

)
, that is, k = 0.

∴ T(n) = Θ
(
n2lgn

)
.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 44 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Examples

Ex. T(n) = 4T(n/2)+n
a = 4,b = 2 ⇒ nlogb a = n2; f(n) = n.
Case 1: f(n) = O

(
n2−ε) for ε = 1

∴ T(n) = Θ
(
n2).

Ex. T(n) = 4T(n/2)+n2

a = 4,b = 2 ⇒ nlogb a = n2; f(n) = n2.
Case 2: f(n) = Θ

(
n2lg0n

)
, that is, k = 0.

∴ T(n) = Θ
(
n2lgn

)
.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 44 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Examples

Ex. T(n) = 4T(n/2)+n3

a = 4,b = 2 ⇒ nlogb a = n2; f(n) = n3.
Case 3: f(n) = Ω

(
n2+ε) for ε = 1

and 4(n/2)3 ≤ cn3(reg. cond.) for c = 1/2.
∴ T(n) = Θ

(
n3).

Ex. T(n) = 4T(n/2)+n2/ lgn
a = 4,b = 2 ⇒ nlogb a = n2; f(n) = n2/ lgn.
Master method does not apply. In particular, for every
constant ε > 0, we have nε = ω(lgn) .

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 45 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Examples

Ex. T(n) = 4T(n/2)+n3

a = 4,b = 2 ⇒ nlogb a = n2; f(n) = n3.
Case 3: f(n) = Ω

(
n2+ε) for ε = 1

and 4(n/2)3 ≤ cn3(reg. cond.) for c = 1/2.
∴ T(n) = Θ

(
n3).

Ex. T(n) = 4T(n/2)+n2/ lgn
a = 4,b = 2 ⇒ nlogb a = n2; f(n) = n2/ lgn.
Master method does not apply. In particular, for every
constant ε > 0, we have nε = ω(lgn) .

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 45 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Idea of Master Theorem

T(n) = aT(n
b)+ f(n). Recursion tree:

f(n)

f(n/b)

a

f(n/b) ... f(n/b)

f(n/b2) f(n/b2) ...
a

f(n/b2)

T(1)

f(n)

af(n/b)

a2f(n/b2)
...

h = logb n

nlogb aT(1)#leaves = ah

= alogb n

= nlogb a

CASE 1: The weight increases
geometrically from the root to
the leaves. The leaves hold a con-
stant fraction of the total weight.

Θ(nlogb a)

CASE 2: (k = 0) The weight is
approximately the same on each
of the logb n levels. Θ(nlogb a lgn)

CASE 3: The weight decreases
geometrically from the root to
the leaves. The root holds a con-
stant fraction of the total weight.

Θ(f(n))

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 46 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Idea of Master Theorem

T(n) = aT(n
b)+ f(n). Recursion tree:

f(n)

f(n/b)

a

f(n/b) ... f(n/b)

f(n/b2) f(n/b2) ...
a

f(n/b2)

T(1)

f(n)

af(n/b)

a2f(n/b2)
...

h = logb n

nlogb aT(1)#leaves = ah

= alogb n

= nlogb a

CASE 1: The weight increases
geometrically from the root to
the leaves. The leaves hold a con-
stant fraction of the total weight.

Θ(nlogb a)

CASE 2: (k = 0) The weight is
approximately the same on each
of the logb n levels. Θ(nlogb a lgn)

CASE 3: The weight decreases
geometrically from the root to
the leaves. The root holds a con-
stant fraction of the total weight.

Θ(f(n))

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 46 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Idea of Master Theorem

T(n) = aT(n
b)+ f(n). Recursion tree:

f(n)

f(n/b)

a

f(n/b) ... f(n/b)

f(n/b2) f(n/b2) ...
a

f(n/b2)

T(1)

f(n)

af(n/b)

a2f(n/b2)
...

h = logb n

nlogb aT(1)#leaves = ah

= alogb n

= nlogb a

CASE 1: The weight increases
geometrically from the root to
the leaves. The leaves hold a con-
stant fraction of the total weight.

Θ(nlogb a)

CASE 2: (k = 0) The weight is
approximately the same on each
of the logb n levels. Θ(nlogb a lgn)

CASE 3: The weight decreases
geometrically from the root to
the leaves. The root holds a con-
stant fraction of the total weight.

Θ(f(n))

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 46 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Idea of Master Theorem

T(n) = aT(n
b)+ f(n). Recursion tree:

f(n)

f(n/b)

a

f(n/b) ... f(n/b)

f(n/b2) f(n/b2) ...
a

f(n/b2)

T(1)

f(n)

af(n/b)

a2f(n/b2)
...

h = logb n

nlogb aT(1)

#leaves = ah

= alogb n

= nlogb a

CASE 1: The weight increases
geometrically from the root to
the leaves. The leaves hold a con-
stant fraction of the total weight.

Θ(nlogb a)

CASE 2: (k = 0) The weight is
approximately the same on each
of the logb n levels. Θ(nlogb a lgn)

CASE 3: The weight decreases
geometrically from the root to
the leaves. The root holds a con-
stant fraction of the total weight.

Θ(f(n))

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 46 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Idea of Master Theorem

T(n) = aT(n
b)+ f(n). Recursion tree:

f(n)

f(n/b)

a

f(n/b) ... f(n/b)

f(n/b2) f(n/b2) ...
a

f(n/b2)

T(1)

f(n)

af(n/b)

a2f(n/b2)
...

h = logb n

nlogb aT(1)#leaves = ah

= alogb n

= nlogb a

CASE 1: The weight increases
geometrically from the root to
the leaves. The leaves hold a con-
stant fraction of the total weight.

Θ(nlogb a)

CASE 2: (k = 0) The weight is
approximately the same on each
of the logb n levels. Θ(nlogb a lgn)

CASE 3: The weight decreases
geometrically from the root to
the leaves. The root holds a con-
stant fraction of the total weight.

Θ(f(n))

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 46 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Idea of Master Theorem

T(n) = aT(n
b)+ f(n). Recursion tree:

f(n)

f(n/b)

a

f(n/b) ... f(n/b)

f(n/b2) f(n/b2) ...
a

f(n/b2)

T(1)

f(n)

af(n/b)

a2f(n/b2)
...

h = logb n

nlogb aT(1)#leaves = ah

= alogb n

= nlogb a

CASE 1: The weight increases
geometrically from the root to
the leaves. The leaves hold a con-
stant fraction of the total weight.

Θ(nlogb a)

CASE 2: (k = 0) The weight is
approximately the same on each
of the logb n levels. Θ(nlogb a lgn)

CASE 3: The weight decreases
geometrically from the root to
the leaves. The root holds a con-
stant fraction of the total weight.

Θ(f(n))

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 46 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Idea of Master Theorem

T(n) = aT(n
b)+ f(n). Recursion tree:

f(n)

f(n/b)

a

f(n/b) ... f(n/b)

f(n/b2) f(n/b2) ...
a

f(n/b2)

T(1)

f(n)

af(n/b)

a2f(n/b2)
...

h = logb n

nlogb aT(1)#leaves = ah

= alogb n

= nlogb a

CASE 1: The weight increases
geometrically from the root to
the leaves. The leaves hold a con-
stant fraction of the total weight.

Θ(nlogb a)

CASE 2: (k = 0) The weight is
approximately the same on each
of the logb n levels. Θ(nlogb a lgn)

CASE 3: The weight decreases
geometrically from the root to
the leaves. The root holds a con-
stant fraction of the total weight.

Θ(f(n))

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 46 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Idea of Master Theorem

T(n) = aT(n
b)+ f(n). Recursion tree:

f(n)

f(n/b)

a

f(n/b) ... f(n/b)

f(n/b2) f(n/b2) ...
a

f(n/b2)

T(1)

f(n)

af(n/b)

a2f(n/b2)
...

h = logb n

nlogb aT(1)#leaves = ah

= alogb n

= nlogb a

CASE 1: The weight increases
geometrically from the root to
the leaves. The leaves hold a con-
stant fraction of the total weight.

Θ(nlogb a)

CASE 2: (k = 0) The weight is
approximately the same on each
of the logb n levels. Θ(nlogb a lgn)

CASE 3: The weight decreases
geometrically from the root to
the leaves. The root holds a con-
stant fraction of the total weight.

Θ(f(n))

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 46 / 47

Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Appendix: Geometric Series

1+x+x2 + · · ·+xn =
1−xn+1

1−x for x ̸= 1

1+x+x2 + · · ·= 1
1−x for |x|< 1

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 47 / 47

	Outline
	Asymptotic Notation: notation
	notation
	notation
	notation
	Other Asymptotic Notations
	Comparing Functions

	Standard Notations and Common Functions
	Recurrences
	Substitution Method
	Recursion Tree
	Master Method

