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Asymptotic Notation: O−notation

O-notation: upper bounds
We write f(n) = O(g(n)) if there exist constants c > 0,n0 > 0
such that 0 ≤ f(n)≤ cg(n) for all n ≥ n0.

Example: 2n2 = O(n3) (c = 1,n0 = 2)

functions,
not values funny, “one-way” equality
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Set Definition of O-notation

O(g(n)) = {f(n) : there exist constants c > 0,n0 > 0 such that
0 ≤ f(n)≤ cg(n) for all n ≥ n0}.

Example: 2n2 ∈ O
(
n3)
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Macro Substitution

Convention: A set in a formula represents an anonymous
function in the set.

Example: f(n) = n3 +O
(
n2)

means
f(n) = n3 +h(n)
for some h(n) ∈ O

(
n2).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 6 / 47



Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

O-otation
Ω-otation
Θ-otation
Other Asymptotic Notations
Comparing Functions

Asymptotic Notation: Ω-notation

O-notation is an upper-bound notation.
The Ω-notation provides a lower bound.

Set definition of Ω-notation
Ω(g(n)) = {f(n) : there exist constants c > 0,n0 > 0 such that

0 ≤ c ·g(n)≤ f(n) for all n ≥ n0}

Example:
√

n = Ω(lgn)
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Asymptotic Notation: Θ-notation

Θ-notation: tight bounds
We write f(n) = Θ(g(n)) if there exist constants
c1 > 0,c2 > 0,n0 > 0 such that c2g(n)≥ f(n)≥ c1g(n)≥ 0 for all
n ≥ n0.

Θ(g(n)) = O(g(n))∩Ω(g(n))

Example: 1
2n2 −2n = Θ

(
n2)

Θ(n0) or Θ(1)

Theorem:
The leading constant and low order terms do not matter.
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Other Asymptotic Notations

o-notation
o(g(n)) = {f(n): for all c > 0, there exist constants n0 > 0 such
that 0 ≤ f(n)< cg(n) for all n ≥ n0}.
Other equivalent definition lim

n→∞
f(n)
g(n) = 0.

ω-notation
ω(g(n)) = {f(n): for all c > 0, there exist constants n0 > 0 such
that 0 ≤ cg(n)< f(n) for all n ≥ n0}.
Other equivalent definition lim

n→∞
f(n)
g(n) = ∞
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A Helpful Analogy

f(n) = O(g(n)) is similar to f(n)≤ g(n).

f(n) = o(g(n)) is similar to f(n)< g(n).

f(n) = Θ(g(n)) is similar to f(n) = g(n).

f(n) = Ω(g(n)) is similar to f(n)≥ g(n).

f(n) = ω(g(n)) is similar to f(n)> g(n).
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Transitivity

f(n) = Θ(g(n)) and g(n) = Θ(h(n)) imply f(n) = Θ(h(n)).

f(n) = O(g(n)) and g(n) = O(h(n)) imply f(n) = O(h(n)).

f(n) = Ω(g(n)) and g(n) = Ω(h(n)) imply f(n) = Ω(h(n)).

f(n) = o(g(n)) and g(n) = o(h(n)) imply f(n) = o(h(n)).

f(n) = ω(g(n)) and g(n) = ω(h(n)) imply f(n) = ω(h(n)).
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Reflexivity

f(n) = Θ(f(n))

f(n) = O(f(n))

f(n) = Ω(f(n))
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Symmetry & Transpose Symmetry

Symmetry
f(n) = Θ(g(n)) if and only if g(n) = Θ(f(n)).

Transpose Symmetry
f(n) = O(g(n)) if and only if g(n) = Ω(f(n)).
f(n) = o(g(n)) if and only if g(n) = ω(f(n)).
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Non-completeness

Non-completeness of O, Ω, and Θ notations
For real numbers a and b, we know that either a < b, or a = b,
or a > b is true.

However, for two functions f(n) and g(n), it is possible that
neither of the following is true: f(n) = O(g(n)), or
f(n) = Θ(g(n)), or f(n) = Ω(g(n)). For example, f(n) = n, and
g(n) = n1−sin(nπ/2).
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Floors and Ceilings

Floor
For any real number x, we denote the greatest integer less than
or equal to x by ⌊x⌋ (read “the floor of x”)

Ceiling
For any real number x, we denote the least integer greater than
or equal to x by ⌈x⌉ (read “the ceiling of x”)

x−1 < ⌊x⌋ ≤ x ≤ ⌈x⌉ ≤ x+1.
For any integer n, ⌈n/2⌉+ ⌊n/2⌋= n.

For any real number x ≥ 0 and integers a,b > 0,
⌈ ⌈x/a⌉

b ⌉= ⌈ x
ab⌉, ⌊

⌊x/a⌋
b ⌋= ⌊ x

ab⌋, ⌈
a
b⌉ ≤

a+(b−1)
b , ⌊ a

b⌋ ≥
a−(b−1)

b ,
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Modular Arithmetic

Mod
For any integer a and any positive integer n, the value a mod n
is the remainder (or residue) of the quotient a/n:

a mod n = a−n⌊a/n⌋.

Equivalent
If (a mod n) = (b mod n), we write (a ≡ b) mod n and say that
a is equivalent to b, modulo n.
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Exponentials

∀ a > 0, a0 = 1; (am)n = (an)m = amn; aman = am+n

When a > 1, limn→∞
nb

an = 0. That is, nb = o(an).

For all real x, ex = 1+x+ x2

2! +
x3

3! + ...= ∑∞
i=0

xi

i!
When |x| ≤ 1, 1+x ≤ ex ≤ 1+x+x2

When x → 0, ex = 1+x+Θ(x2)
For all x, limn→∞(1+ x

n)
n = ex
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Logarithms

lgn = log2 n; lnn = loge n; lgk n = (lgn)k; lg lgn = lg(lgn)

For all real a,b,c > 0, and n,
a = blogb a; logc(ab) = logc a+ logc b;
logb an = n logb a; logb a = lga

lgb ; alogb c = clogb a

When a > 0, limn→∞
lgb n

(2a)lgn = limn→∞
lgb n
na = 0. That is,

lgb n = o(na).

When |x| ≤ 1, ln(1+x) = x− x2

2 + x3

3 − x4

4 + x5

5 − ...
For x >−1, x

1+x ≤ ln(1+x)≤ x

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 20 / 47
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Factorials

n! =
{

1 if n = 0
n · (n−1)! if n > 0

n! ≤ nn. A better bound:

Stirling’s approximation
n! =

√
2πn(n

e )
n(1+Θ( 1

n))
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Functional iteration

functional iteration
We use the notation f(i)(n) to denote the function f(n)

iteratively applied i times to an initial value of n. Formally, let
f(n) be a function over the reals. For non-negative integers i, we

recursively define

f(i)(n) =
{

n if i = 0,
f(f(i−1)(n)) if i > 0,

Example: if f(n) = 2n, then f(i)(n) = 2in.
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The iterated logarithm function

We use the notation lg∗n to denote the iterated logarithm.
lg∗n = min{i ≥ 0 : lg(i)n ≤ 1}.

Example:
lg∗ 2 = 1,
lg∗ 4 = 2,
lg∗ 16 = 3,

lg∗(265536) = 5.
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Fibonacci numbers
We define the Fibonacci numbers by the following recurrence:

F0 = 0,
F1 = 1,

Fi = Fi−1 +Fi−2, for i ≥ 2.

Each Fibonacci number is the sum of the two previous ones,
yielding the sequence

0,1,1,2,3,5,8,13,21,34,55, ...
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Solving Recurrences

Recurrences go hand in hand with the divide-and-conquer
paradigm. A recurrence is an equation or inequality that
describes a function in terms of its value on smaller inputs.
Three methods for solving recurrences

substitution method: guess a bound and use mathematical
induction to prove the guess correct.
recursion-tree method: converts the recurrence into a tree
and use techniques for bounding summations.
master method: provides bounds of the form
T(n) = a ·T(n

b)+ f(n).
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Substitution Method

The most general method
1. Guess the form of the solution.
2. Solve for constants.

This method only works if we can guess the form of the
answer.
The method can be used to establish either upper or lower
bounds on a recurrence.
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Example of Substitution

Example: T(n) = 4T(n/2)+n
Assume that T(1) = Θ(1).
Guess T(n) = O(n3). (Note that if we guess Θ, we need
prove O and Ω separately.)
Assume that T(k)≤ ck3 for k < n and some constant c > 0.
Prove T(n)≤ cn3 by induction.
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Example of Substitution

T(n) = 4T(n/2)+n
≤ 4c(n/2)3 +n
= (c/2)n3 +n
= cn3 − ((c/2)n3 −n)
≤ cn3

whenever (c/2)n3 −n ≥ 0, for example, if c ≥ 2 and n ≥ 1.

desired − residual
desired

residual
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Example (Continued)

We must also handle the initial conditions, that is, ground
the induction with base cases.
Base: T(n) = Θ(1) for all n < n0, where n0 is a suitable
constant.
For 1 ≤ n < n0, we have “Θ(1)” ≤ cn3, if we pick c big
enough.

This bound is not tight!
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A Tighter Upper Bound?

We shall prove that T(n) = O(n2).

Assume that T(k)≤ ck2 for k < n :

T(n) = 4T(n/2)+n
≤ 4c(n/2)2 +n
= cn2 +n
= O(n2) Wrong! We must prove the I.H.
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A Tighter Upper Bound?

We shall prove that T(n) = O(n2).

Assume that T(k)≤ ck2 for k < n :

T(n) = 4T(n/2)+n
≤ 4c(n/2)2 +n
= cn2 +n
= O(n2)

= cn2 − (−n)
≤ cn2

Wrong! We must prove the I.H.
[desired − residual]

for no choice of c > 0. Lose!
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A Tighter Upper Bound!

IDEA: Strengthen the inductive hypothesis.
Subtract a low-order term.
Inductive hypothesis: T(k)≤ c1k2 − c2k for k < n

T(n) = 4T(n/2)+n
≤ 4(c1(n/2)2 − c2(n/2))+n
= c1n2 −2c2n+n
= c1n2 − c2n− (c2n−n)
≤ c1n2 − c2n if c2 ≥ 1

Pick c1 big enough to handle the initial conditions.
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A Tighter Lower Bound

We shall prove that T(n) = Ω(n2).

Assume that T(k)≥ ck2 for k < n, and for some chosen constant
c.

T(n) = 4T(n/2)+n
≥ 4c(n/2)2 +n
= cn2 +n
≥ cn2
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Recursion-tree Method

A recursion tree models the costs (time) of a recursive
execution of an algorithm.
The recursion-tree method can be unreliable.
The recursion tree method is good for generating guesses
for the substitution method.
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Example of Recursion Tree

Solve T(n) = T(n/4)+T(n/2)+n2:

T(n)
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Example of Recursion Tree

Solve T(n) = T(n/4)+T(n/2)+n2:

n2

T(n/4) T(n/2)
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Example of Recursion Tree

Solve T(n) = T(n/4)+T(n/2)+n2:

n2

(n/4)2 (n/2)2

T(n/16) T(n/8) T(n/8) T(n/4)
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Example of Recursion Tree

Solve T(n) = T(n/4)+T(n/2)+n2:

n2

(n/4)2 (n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

Θ(1)

n2
5
16n2

25
256n2

...
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Example of Recursion Tree

Solve T(n) = T(n/4)+T(n/2)+n2:

n2

(n/4)2 (n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

Θ(1)

n2
5
16n2

25
256n2

...

Total= n2(1+ 5
16 +( 5

16)
2
+( 5

16)
3
+ · · ·) = Θ(n2)

(geometric series)
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The Master Method

Master method
The master method applies to recurrences of the form

T(n) = aT(
n
b)+ f(n)

where a ≥ 1, b > 1, and f is asymptotically positive.
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Three Common Cases

Compare f(n) with nlogb a:
1. f(n) = O

(
nlogb a−ε) for some constant ε > 0

f(n) grows polynomially slower than nlogb a (by an nε factor).
Solution: T(n) = Θ

(
nlogb a).

2. f(n) = Θ
(
nlogb a lgk n

)
for some constant k ≥ 0

f(n) and nlogb a lgk n grow at similar rates.
Solution: T(n) = Θ

(
nlogb a lgk+1 n

)
.
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Three Common Cases

Compare f(n) with nlogb a:
3. f(n) = Ω

(
nlogb a+ε) for some constant ε > 0.

f(n) grows polynomially faster than nlogb a (by an nε factor),
and f(n) satisfies the regularity condition that af(n/b)≤ cf(n)
for some constant c < 1 and all sufficiently large n.
Solution: T(n) = Θ(f(n)).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 43 / 47



Outline
Asymptotic Notation: O-, Ω- and Θ-otation

Standard Notations and Common Functions
Recurrences

Substitution Method
Recursion Tree
Master Method

Examples

Ex. T(n) = 4T(n/2)+n
a = 4,b = 2 ⇒ nlogb a = n2; f(n) = n.
Case 1: f(n) = O

(
n2−ε) for ε = 1

∴ T(n) = Θ
(
n2).

Ex. T(n) = 4T(n/2)+n2

a = 4,b = 2 ⇒ nlogb a = n2; f(n) = n2.
Case 2: f(n) = Θ

(
n2lg0n

)
, that is, k = 0.

∴ T(n) = Θ
(
n2lgn

)
.
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Examples

Ex. T(n) = 4T(n/2)+n3

a = 4,b = 2 ⇒ nlogb a = n2; f(n) = n3.
Case 3: f(n) = Ω

(
n2+ε) for ε = 1

and 4(n/2)3 ≤ cn3( reg. cond. ) for c = 1/2.
∴ T(n) = Θ

(
n3).

Ex. T(n) = 4T(n/2)+n2/ lgn
a = 4,b = 2 ⇒ nlogb a = n2; f(n) = n2/ lgn.
Master method does not apply. In particular, for every
constant ε > 0, we have nε = ω(lgn) .
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Idea of Master Theorem

T(n) = aT(n
b)+ f(n). Recursion tree:

f(n)

f(n/b)

a

f(n/b) ... f(n/b)

f(n/b2) f(n/b2) ...
a

f(n/b2)

T(1)

f(n)

af(n/b)

a2f(n/b2)
...

h = logb n

nlogb aT(1)#leaves = ah

= alogb n

= nlogb a

CASE 1: The weight increases
geometrically from the root to
the leaves. The leaves hold a con-
stant fraction of the total weight.

Θ(nlogb a)

CASE 2: (k = 0) The weight is
approximately the same on each
of the logb n levels. Θ(nlogb a lgn)

CASE 3: The weight decreases
geometrically from the root to
the leaves. The root holds a con-
stant fraction of the total weight.

Θ(f(n))
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Appendix: Geometric Series

1+x+x2 + · · ·+xn =
1−xn+1

1−x for x ̸= 1

1+x+x2 + · · ·= 1
1−x for |x|< 1
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