Introduction to Algorithms Topic 3 : Comparison Based Sorting Algorithms

Xiang-Yang Li and Haisheng Tan¹

School of Computer Science and Technology University of Science and Technology of China (USTC)

Fall Semester 2024

Outline

Basic Concepts Simple Sorting Algorithms Efficient Sorting Algorithms Summary

Basic Concepts

Simple Sorting Algorithms

Efficient Sorting Algorithms

Summary

(D) (A) (A) (A)

Basic Concepts of Sorting Algorithm

Stability

Regardless of how the input data is distributed, the data objects of the same keyword will be kept in the same order as in the input during the sorting process, which is called stable sorting. Otherwise, called unstable sorting.

Example: $2, 2^*, 1 \rightarrow 1, 2^*, 2$ (unstable sorting)

Basic Concepts of Sorting Algorithm

Stability

Regardless of how the input data is distributed, the data objects of the same keyword will be kept in the same order as in the input during the sorting process, which is called stable sorting. Otherwise, called unstable sorting.

Example: $2, 2^*, 1 \rightarrow 1, 2^*, 2$ (unstable sorting)

Time Complexity

Usually measured by the number of data comparisons and the number of data movements in the algorithm execution.

Basic Concepts of Sorting Algorithm

Stability

Regardless of how the input data is distributed, the data objects of the same keyword will be kept in the same order as in the input during the sorting process, which is called stable sorting. Otherwise, called unstable sorting.

Example: $2, 2^*, 1 \rightarrow 1, 2^*, 2$ (unstable sorting)

Time Complexity

Usually measured by the number of data comparisons and the number of data movements in the algorithm execution.

In-place Sorting

only a constant of elements are stored outside the input array.

Insertion Sort Selection Sort Bubble Sort

Contents

Basic Concepts

Simple Sorting Algorithms Insertion Sort Selection Sort

Bubble Sort

Efficient Sorting Algorithms

Summary

(ロ) (日) (日) (日) (日) (日) (日)

Insertion Sort Selection Sort Bubble Sort

Insertion Sort

General idea: Maintain an ordered sequence.

Insertion Sort Selection Sort Bubble Sort

Insertion Sort

General idea: Maintain an ordered sequence.

Insertion-Sort(A) 1: for i = 2 to A.length do kev = A[i]2: // Insert A[j] into the sorted sequence A[1.,j-1]. 3: 4: i = i - 1while i > 0 and A[i] > key do5: A[i+1] = A[i]6: i = i - 17: A[i+1] = key8:

ロト 4月 ト 4日 ト 4日 ト 4日 くのく

Insertion Sort Selection Sort Bubble Sort

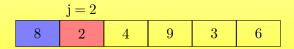
Example of Insertion Sort

8 2	4	9	3	6
-----	---	---	---	---

・ロト ・ 日 ・ モ ト ・ 日 ・ 三

Insertion Sort Selection Sort Bubble Sort

Example of Insertion Sort

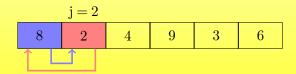


Insertion Sort Selection Sort Bubble Sort

Example of Insertion Sort

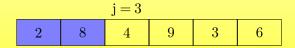
Insertion Sort Selection Sort Bubble Sort

Example of Insertion Sort



Insertion Sort Selection Sort Bubble Sort

Example of Insertion Sort

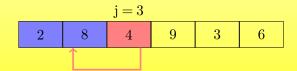


Insertion Sort Selection Sort Bubble Sort

Example of Insertion Sort

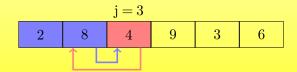
Insertion Sort Selection Sort Bubble Sort

Example of Insertion Sort



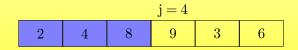
Insertion Sort Selection Sort Bubble Sort

Example of Insertion Sort



Insertion Sort Selection Sort Bubble Sort

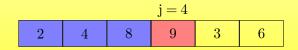
Example of Insertion Sort



・ロト ・ 日 ・ と こ ・ と う く つ く つ ・

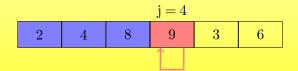
Insertion Sort Selection Sort Bubble Sort

Example of Insertion Sort



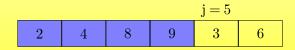
Insertion Sort Selection Sort Bubble Sort

Example of Insertion Sort



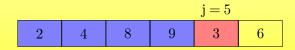
Insertion Sort Selection Sort Bubble Sort

Example of Insertion Sort



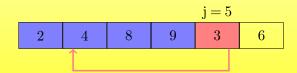
Insertion Sort Selection Sort Bubble Sort

Example of Insertion Sort



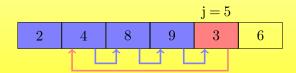
Insertion Sort Selection Sort Bubble Sort

Example of Insertion Sort



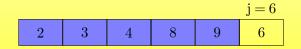
Insertion Sort Selection Sort Bubble Sort

Example of Insertion Sort



Insertion Sort Selection Sort Bubble Sort

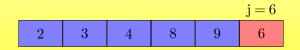
Example of Insertion Sort



Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 6/57

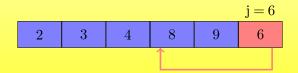
Insertion Sort Selection Sort Bubble Sort

Example of Insertion Sort



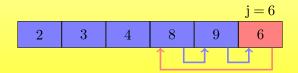
Insertion Sort Selection Sort Bubble Sort

Example of Insertion Sort



Insertion Sort Selection Sort Bubble Sort

Example of Insertion Sort



Insertion Sort Selection Sort Bubble Sort

Example of Insertion Sort

2 3	4	6	8	9
-----	---	---	---	---

クタウ ヨー・ヨ・・ヨ・ (日・・日・

Insertion Sort Selection Sort Bubble Sort

Insertion Sort

▶ Time Complexity

- ▶ Best: O(n)
- Average: $O(n^2)$
- Worst: $O(n^2)$
- ► Memory: 1
- ► Stable: Yes

・ロト (日) ・ヨト ・ヨト (日) つくで

Insertion Sort Selection Sort Bubble Sort

Insertion Sort

- ▶ Time Complexity
 - Best: O(n)
 - Average: $O(n^2)$
 - Worst: $O(n^2)$
- Memory: 1
- Stable: Yes

$$A[i+1] = A[i]$$

$$i = i - 1$$

6:

7: 8:

$$: \qquad A[i+1] = key$$

Insertion Sort Selection Sort Bubble Sort

Contents

Basic Concepts

Simple Sorting Algorithms Insertion Sort Selection Sort Bubble Sort

Efficient Sorting Algorithms

Summary

クタウ ヨー・ヨ・・ヨ・ (日・・日・

Insertion Sort Selection Sort Bubble Sort

Selection Sort

General idea: Select and remove the smallest element from unsorted set.

クタウ ヨー・ヨ・・ヨ・ (日・・日・

Insertion Sort Selection Sort Bubble Sort

Selection Sort

General idea: Select and remove the smallest element from unsorted set.

ション ビー・ビー・ ショー ショー

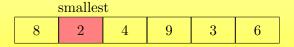
Insertion Sort Selection Sort Bubble Sort

Example of Selection Sort

8	2	4	9	3	6
---	---	---	---	---	---

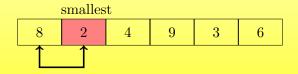
Insertion Sort Selection Sort Bubble Sort

Example of Selection Sort



Insertion Sort Selection Sort Bubble Sort

Example of Selection Sort



Insertion Sort Selection Sort Bubble Sort

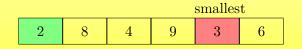
Example of Selection Sort

2 8	4	9	3	6
-----	---	---	---	---

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 10/57

Insertion Sort Selection Sort Bubble Sort

Example of Selection Sort



Insertion Sort Selection Sort Bubble Sort

Example of Selection Sort

Insertion Sort Selection Sort Bubble Sort

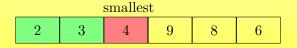
Example of Selection Sort

2 3	4	9	8	6
-----	---	---	---	---

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 10/57

Insertion Sort Selection Sort Bubble Sort

Example of Selection Sort



Insertion Sort Selection Sort Bubble Sort

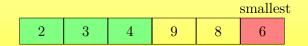
Example of Selection Sort

2 3	4	9	8	6
-----	---	---	---	---

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 10/57

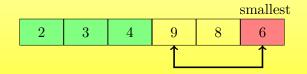
Insertion Sort Selection Sort Bubble Sort

Example of Selection Sort



Insertion Sort Selection Sort Bubble Sort

Example of Selection Sort



Insertion Sort Selection Sort Bubble Sort

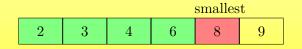
Example of Selection Sort

2 3	4	6	8	9
-----	---	---	---	---

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 10/57

Insertion Sort Selection Sort Bubble Sort

Example of Selection Sort



Insertion Sort Selection Sort Bubble Sort

Example of Selection Sort

2 3	4	6	8	9
-----	---	---	---	---

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 10/57

Insertion Sort Selection Sort Bubble Sort

Selection Sort

▶ Time Complexity

- Best: $O(n^2)$
- Average: $O(n^2)$
- Worst: $O(n^2)$
- ► Memory: 1
- ► Stable: No

Insertion Sort Selection Sort Bubble Sort

Selection Sort

▶ Time Complexity

- Best: $O(n^2)$
- Average: $O(n^2)$
- Worst: $O(n^2)$
- Memory: 1
- Stable: No

D > + () > + E > + E > E

Insertion Sort Selection Sort Bubble Sort

Selection Sort

Stable sorting: How to revise the selection sorting to make it stable?

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 12/57

イロト イクト イミト イミト 三日

Insertion Sort Selection Sort **Bubble Sort**

Contents

Basic Concepts

Simple Sorting Algorithms

Insertion Sort Selection Sort Bubble Sort

Efficient Sorting Algorithms

Summary

クタウ ヨー・ヨ・・ヨ・ (日・・日・

Insertion Sort Selection Sort **Bubble Sort**

Bubble Sort

General idea: From the back to the front, if some elements are smaller than their predecessor, then swap them.

クタウ ヨー・ヨ・・ヨ・ (日・・日・

Insertion Sort Selection Sort Bubble Sort

Bubble Sort

General idea: From the back to the front, if some elements are smaller than their predecessor, then swap them.

7: if noswap then break

・ロト ・ 日 ・ モ ト ・ 日 ・ 三

Insertion Sort Selection Sort Bubble Sort

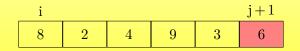
Example of Bubble Sort

8 2	4	9	3	6
-----	---	---	---	---

イロト イクト イミト イミト 三日

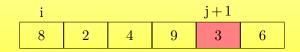
Insertion Sort Selection Sort Bubble Sort

Example of Bubble Sort



Insertion Sort Selection Sort Bubble Sort

Example of Bubble Sort



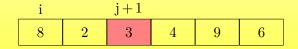
Insertion Sort Selection Sort Bubble Sort

Example of Bubble Sort



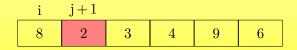
Insertion Sort Selection Sort Bubble Sort

Example of Bubble Sort



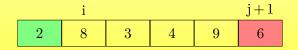
Insertion Sort Selection Sort **Bubble Sort**

Example of Bubble Sort



Insertion Sort Selection Sort **Bubble Sort**

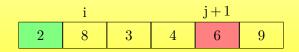
Example of Bubble Sort



Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 15/57

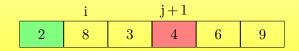
Insertion Sort Selection Sort Bubble Sort

Example of Bubble Sort



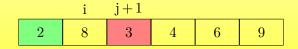
Insertion Sort Selection Sort Bubble Sort

Example of Bubble Sort



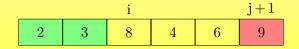
Insertion Sort Selection Sort **Bubble Sort**

Example of Bubble Sort



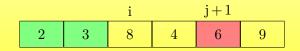
Insertion Sort Selection Sort **Bubble Sort**

Example of Bubble Sort



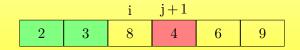
Insertion Sort Selection Sort Bubble Sort

Example of Bubble Sort



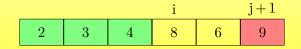
Insertion Sort Selection Sort Bubble Sort

Example of Bubble Sort



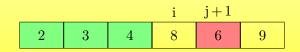
Insertion Sort Selection Sort **Bubble Sort**

Example of Bubble Sort



Insertion Sort Selection Sort Bubble Sort

Example of Bubble Sort



Insertion Sort Selection Sort Bubble Sort

Example of Bubble Sort

2 3	4	6	8	9
-----	---	---	---	---

イロト イクト イミト イミト 三日

Insertion Sort Selection Sort Bubble Sort

Bubble Sort

► Time Complexity

- Best: O(n)
- Average: $O(n^2)$
- Worst: $O(n^2)$
- ► Memory: 1
- ► Stable: Yes

Insertion Sort Selection Sort Bubble Sort

Bubble Sort

▶ Time Complexity

- \blacktriangleright Best: O(n)
- Average: $O(n^2)$
- Worst: $O(n^2)$
- ▶ Memory: 1
- ▶ Stable: Yes

Bubble-Sort(A)

1: for
$$i = 1$$
 to A.length -1 do

- 2: noswap = TRUE
- 3: for j = A.length 1 downto i do
- 4: if A[j+1] < A[j] then
- 5: $A[j] \leftrightarrow A[j+1]$
- $6: \qquad \text{noswap} = \text{FALSE}$
- 7: if noswap then break

Shellsort Heapsort Quicksort

Contents

Basic Concepts

Simple Sorting Algorithms

Efficient Sorting Algorithms Shellsort Heapsort Onicksort

Summary

(ロ) (日) (日) (日) (日) (日) (日)

Shellsort Heapsort Quicksort

Shellsort

General idea:

- Choose a descending gap sequence (e.g., D = [5,3,2,1]).
- In each round, elements with the same gap d are in the same group.
- ► Apply Insertion-Sort for each group.
- Reduce the amount of data migration that caused by insertion sort.

Shellsort Heapsort Quicksort

Shellsort

Xiang-Yang Li and Haisheng Tan

Introduction to Algorithms

19/57

Ξ

Shellsort Heapsort Quicksort

Example of Shellsort

$21 \quad 25 \quad 49 \quad \underline{25} \quad 16 \quad 08 \quad 27 \quad 04 \quad 55 \quad 48$

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 20/57

・ロト ・ 日 ・ と こ ・ と う く つ く つ ・

Shellsort Heapsort Quicksort

Example of Shellsort

21 25 49 25 16 08 27 04 55 48 d=3

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 20/57

・ロト ・ 日 ・ と こ ・ と う く つ く つ ・

Shellsort Heapsort Quicksort

Example of Shellsort

21	25	49	<u>25</u>	16	08	27	04	55	48	d = 3
21	04	08	<u>25</u>	16	49	27	25	55	48	

・ロト ・ 日 ・ と こ ・ と う く つ く つ ・

Shellsort Heapsort Quicksort

Example of Shellsort

21	25	49	<u>25</u>	16	08	27	04	55	48	d = 3
21	04	08	<u>25</u>	16	49	27	25	55	48	d = 2

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 20/57

Shellsort Heapsort Quicksort

Example of Shellsort

21	25	49	<u>25</u>	16	08	27	04	55	48	d = 3
21	04	08	<u>25</u>	16	49	27	25	55	48	d = 2
08	04	16	<u>25</u>	21	25	27	48	55	49	

Shellsort Heapsort Quicksort

Example of Shellsort

21	25	49	<u>25</u>	16	08	27	04	55	48	d = 3
21	04	08	<u>25</u>	16	49	27	25	55	48	d = 2
08	04	16	<u>25</u>	21	25	27	48	55	49	d = 1

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 20/57

Shellsort Heapsort Quicksort

Example of Shellsort

21	25	49	<u>25</u>	16	08	27	04	55	48	d = 3
21	04	08	<u>25</u>	16	49	27	25	55	48	d = 2
08	04	16	<u>25</u>	21	25	27	48	55	49	d = 1
04	08	16	21	<u>25</u>	25	27	48	49	55	

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 20/57

4日×4日×4日×4日×4日×4日×

Shellsort Heapsort Quicksort

Shellsort

▶ Time Complexity

- ▶ Best: depends on the gap sequence
- Average: depends on the gap sequence
- ► Worst: depends on the gap sequence, e.g., O(n^{4/3}), when the gap sequence is 4^k + 3 · 2^{k-1} + 1, prefixed with 1.

▶ Memory: 1

► Stable: No

<u>ロ > 4月 > 4 日 > 4 日 > 日</u> 900

Shellsort Heapsort Quicksort

Shellsort

Shellsort

Why Shellsort typically performs faster?

- Insertion-Sorting small-sized array although costs $O(n^2)$ in the worst case, but it is similar to O(n) in values.
- For large array, when we use a gap large enough (in the order of O(n)), each sub-array has a small size, thus efficient to sort.
- After enough iterations, when the gap is small, the majority part of the array is already sorted (thus the complexity is small again).

Shellsort Heapsort Quicksort

Shellsort

How to select the gap sequence?

- $[] \left[\frac{n}{2^k} \right]$: time complexity $\Theta(n^2)$
- ► $2\lceil \frac{n}{2^k+1} \rceil + 1$: time complexity $\Theta(n^{\frac{3}{2}})$
- ► $2^k 1$: time complexity $\Theta(n^{\frac{3}{2}})$
- ► $2^{k} + 1$ (k ≥ 0): time complexity $\Theta(n^{\frac{3}{2}})$
- Successive numbers of the form 2^p3^q for prime numbers p, q: time complexity Θ(nlog² n).

Shellsort Heapsort Quicksort

Shellsort: the lowerbound on the time-complexity

The worst-case complexity of any version of Shellsort is of higher order: Plaxton, Poonen, and Suel showed that it grows at least as rapidly as $\Omega\left(n\left(\frac{\log n}{\log \log n}\right)^2\right)$.

Shellsort **Heapsort** Quicksort

Contents

Basic Concepts

Simple Sorting Algorithms

Efficient Sorting Algorithms Shellsort Heapsort Quicksort

Summary

・ロト (周) (日) (日) 日 ののの

Shellsort **Heapsort** Quicksort

Basic Concepts of Heap

Heap

A data structure which is an array object that can be viewed as a nearly complete binary tree.

The tree is completely filled on all levels except possibly the lowest, which is filled from the left up to a point.

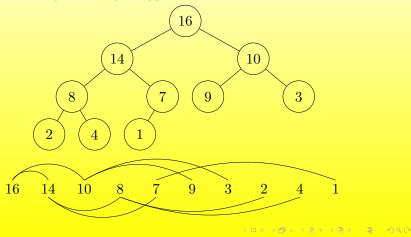
Given the index i of a node, the indices of its parent Parent(i), left child Left(i), and right child Right(i) can be computed simply:

Parent(i)	return	$\lfloor i/2 \rfloor$
Left(i)	return	2 * i
Right(i)	return	2 * i + 1

Shellsort **Heapsort** Quicksort

Example of Max-heap

max-heap: $A[Parent(i)] \ge A[i]$, for all i other than the root.



Shellsort **Heapsort** Quicksort

Maintaining the Heap Property

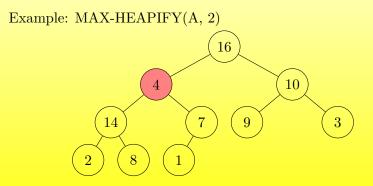
Assumption: sub-trees rooted at Left(i) & Right(i) are max-heaps.

- Max-Heapify(A,i) // Input an an array and an index i 1: l = Left(i);
- 2: r = Right(i)
- 3: if $l \leq A$.heap-size and A[l] > A[i] then
- 4: largest = l
- 5: else largest = i
- 6: if $r \leq A$.heap-size and A[r] > A[largest] then
- 7: largest = r
- 8: if largest \neq i then
- 9: $A[i] \leftrightarrow A[largest]$
- 10: Max-Heapify(A, largest)

・ロト (周) (日) (日) 日 ののの

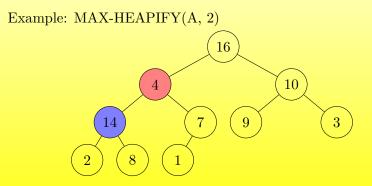
Shellsort **Heapsort** Quicksort

Maintaining the Heap Property



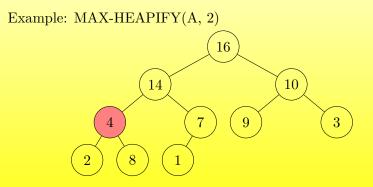
Shellsort **Heapsort** Quicksort

Maintaining the Heap Property



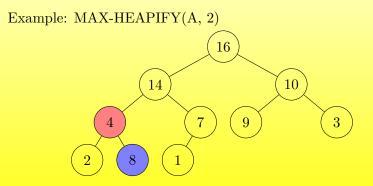
Shellsort **Heapsort** Quicksort

Maintaining the Heap Property



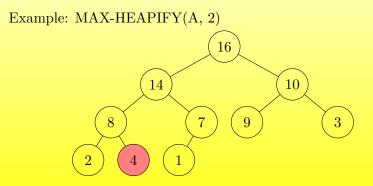
Shellsort **Heapsort** Quicksort

Maintaining the Heap Property



Shellsort **Heapsort** Quicksort

Maintaining the Heap Property



Shellsort **Heapsort** Quicksort

Maintaining the Heap Property

- Assumption: sub-trees rooted at Left(i) & Right(i) are max-heaps.
- Max-Heapify(A,i) // Input an an array and an index i 1: l = Left(i):
- 2: r = Right(i)
- 3: if $l \leq A$.heap-size and A[l] > A[i] then
- 4: largest = l
- 5: else largest = i
- 6: if $r \leq A$.heap-size and A[r] > A[largest] then
- 7: largest = r
- 8: if largest \neq i then
- 9: $A[i] \leftrightarrow A[largest]$
- 10: Max-Heapify(A, largest)

 ・ロトス型トスポケス目を、 書、のQの

Shellsort **Heapsort** Quicksort

Building a Heap

Fact: with the array representation of an n-element heap, the leaves are the nodes indexed from $\lfloor A.length/2 \rfloor + 1$ to n, and each leaf is a 1-element max-heap to begin with.

Shellsort **Heapsort** Quicksort

Building a Heap

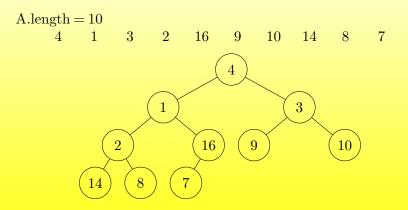
Fact: with the array representation of an n-element heap, the leaves are the nodes indexed from $\lfloor A.length/2 \rfloor + 1$ to n, and each leaf is a 1-element max-heap to begin with.

Build-Max-Heap(A)

- 1: A.heap-size = A.length
- 2: for $i = \lfloor A.length/2 \rfloor$ downto 1 do
- 3: Max-Heapify(A,i)

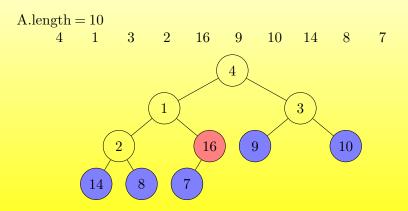
Shellsort **Heapsort** Quicksort

Building a Heap



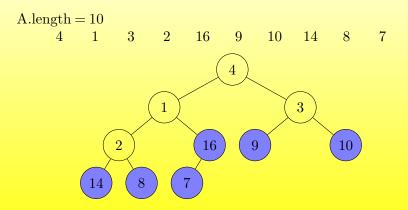
Shellsort **Heapsort** Quicksort

Building a Heap



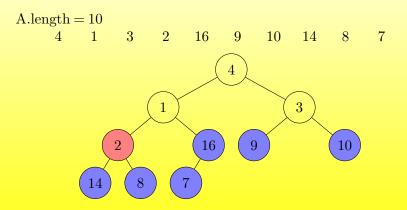
Shellsort **Heapsort** Quicksort

Building a Heap



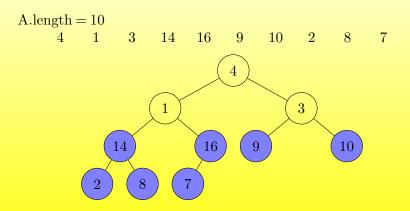
Shellsort **Heapsort** Quicksort

Building a Heap



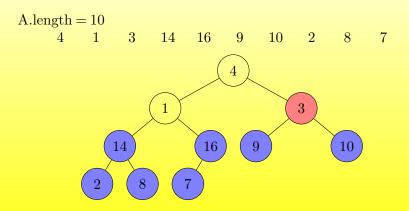
Shellsort **Heapsort** Quicksort

Building a Heap



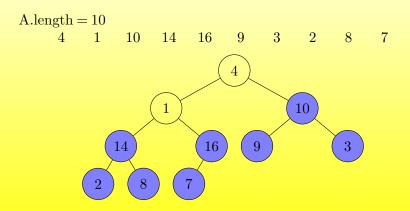
Shellsort **Heapsort** Quicksort

Building a Heap



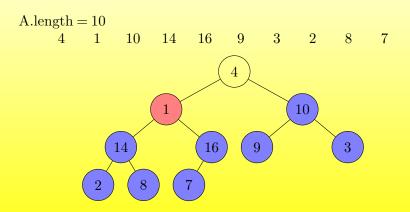
Shellsort **Heapsort** Quicksort

Building a Heap



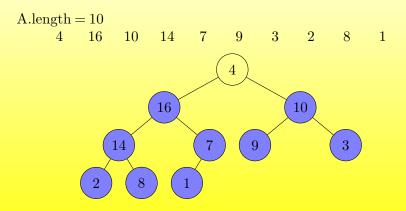
Shellsort **Heapsort** Quicksort

Building a Heap



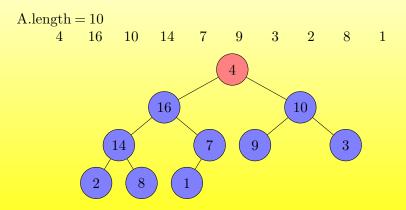
Shellsort **Heapsort** Quicksort

Building a Heap



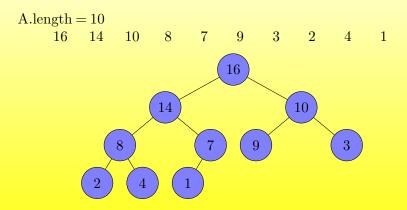
Shellsort **Heapsort** Quicksort

Building a Heap



Shellsort **Heapsort** Quicksort

Building a Heap



Shellsort **Heapsort** Quicksort

Building a Heap

Fact: with the array representation of an n-element heap, the leaves are the nodes indexed from $\lfloor A.length/2 \rfloor + 1$ to n, and each leaf is a 1-element max-heap to begin with.

Shellsort **Heapsort** Quicksort

Building a Heap

Fact: with the array representation of an n-element heap, the leaves are the nodes indexed from $\lfloor A.length/2 \rfloor + 1$ to n, and each leaf is a 1-element max-heap to begin with.

Build-Max-Heap(A)

- 1: A.heap-size = A.length
- 2: for $i = \lfloor A.length/2 \rfloor$ downto 1 do
- 3: Max-Heapify(A,i)

Shellsort **Heapsort** Quicksort

The Heapsort Algorithm

General idea: Same as selection sort, maintain the minimum (maximum) element by using heap. MAX-HEAP: A[1] always stores the largest number.

Shellsort **Heapsort** Quicksort

The Heapsort Algorithm

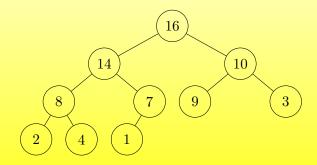
General idea: Same as selection sort, maintain the minimum (maximum) element by using heap. MAX-HEAP: A[1] always stores the largest number.

Heapsort(A)

- 1: Build-Max-Heap(A)
- 2: for i = A.length downto 2 do
- $3: \qquad A[1] \leftrightarrow A[i]$
- 4: A.heap-size = A.heap-size 1
- 5: Max-Heapify(A, 1)

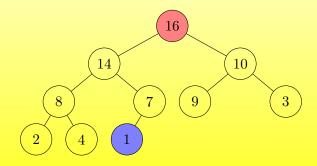
Shellsort **Heapsort** Quicksort

Example of Heapsort



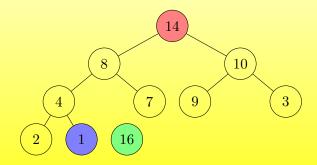
Shellsort **Heapsort** Quicksort

Example of Heapsort



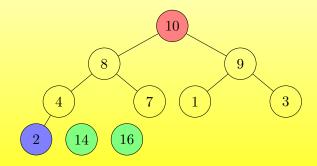
Shellsort **Heapsort** Quicksort

Example of Heapsort



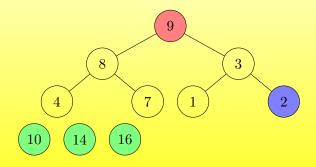
Shellsort **Heapsort** Quicksort

Example of Heapsort



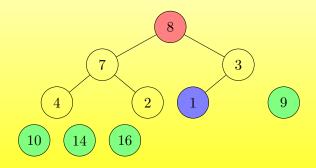
Shellsort **Heapsort** Quicksort

Example of Heapsort



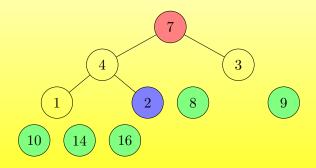
Shellsort **Heapsort** Quicksort

Example of Heapsort



Shellsort **Heapsort** Quicksort

Example of Heapsort



E 990

Shellsort **Heapsort** Quicksort

Example of Heapsort

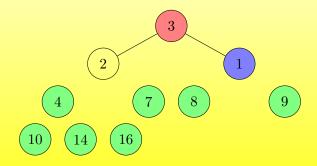


イロト イポト イヨト イヨト

E 990

Shellsort **Heapsort** Quicksort

Example of Heapsort

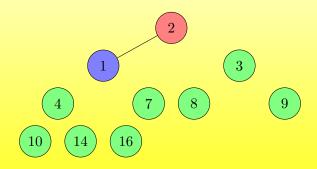


イロト イポト イヨト イヨト

Ξ

Shellsort **Heapsort** Quicksort

Example of Heapsort

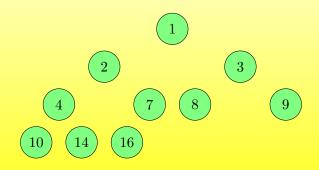


イロト イロト イヨト イヨト

Ξ

Shellsort **Heapsort** Quicksort

Example of Heapsort



イロト イロト イヨト イヨト

Ξ

Shellsort **Heapsort** Quicksort

Heapsort

▶ Time Complexity

- Max-Heapify: $O(\log n) Why?$
- Build-Max-Heap: O(n) Why?
- ▶ Best: $O(n \log n)$
- Average: $O(n \log n)$
- Worst: $O(n \log n)$
- ▶ Memory: 1
- ▶ Stable: No

ロ * 4日 * 4日 * 4日 * 日 * 900

Shellsort **Heapsort** Quicksort

Priority Queues

A priority queue is a data structure for maintaining a set S of elements, each with an associated value called a key. A max-priority queue supports the following operations:

- ▶ Insert(S,x) inserts the element x into the set S, which is equivalent to the operation $S = S \cup \{x\}$.
- ▶ Maximum(S) returns the element of S with the largest key.
- Extract-Max(S) removes and returns the element of S with the largest key.
- Increase-Key(S,x,k) increases the value of element x's key to the new value k, which is assumed to be at least as large as x's current key value.

・ロト (周) (日) (日) 日 ののの

Shellsort **Heapsort** Quicksort

Priority Queues

Heap-Maximum(A) 1: return A[1]

Heap-Extract-Max(A) 1: if A.heap-size < 1 then 2: error "heap underflow" 3: max = A[1] 4. A[1] = A[A heap size]

<u>ロ > 4月 > 4 日 > 4 日 > 日</u> 900

- 4: A[1] = A[A.heap-size]
- 5: A.heap-size = A.heap-size -1
- 6: Max-Heapify(A, 1)
- 7: return max

Shellsort **Heapsort** Quicksort

Priority Queues

Heap-Increase-Key(A, i, key)

- 1: if key < A[i] then
- 2: error "new key is smaller than current key"
- 3: A[i] = key
- 4: while i > 1 and A[Parent(i)] < A[i] do
- 5: $A[i] \leftrightarrow A[Parent(i)]$
- $6: \qquad i = Parent(i)$

ロト 4月 ト 4 三 ト 4 三 ト 4 日 ト 4 日

Shellsort **Heapsort** Quicksort

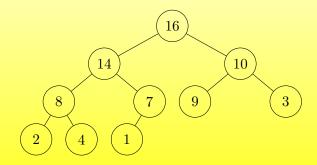
Max-Heap-Insert(A, key)

- 1: A.heap-size = A.heap-size + 1
- 2: $A[A.heap-size] = -\infty$
- 3: Heap-Increase-Key(A, A.heap-size, key)

クタウ ヨー・ヨ・・ヨ・ (日・・日・

Shellsort **Heapsort** Quicksort

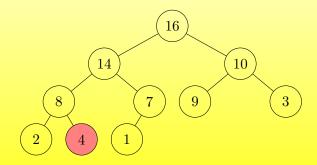
Example of Heap-Increase-Key



・ロト ・ 日 ・ と こ ・ と う く つ く つ ・

Shellsort **Heapsort** Quicksort

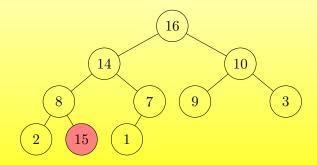
Example of Heap-Increase-Key



・ロト ・ 日 ・ と こ ・ と う く つ く つ ・

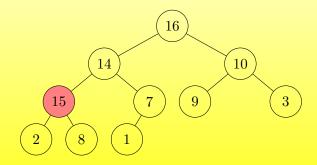
Shellsort **Heapsort** Quicksort

Example of Heap-Increase-Key



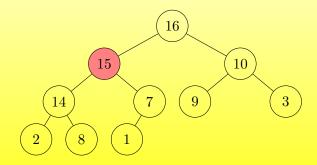
Shellsort **Heapsort** Quicksort

Example of Heap-Increase-Key



Shellsort **Heapsort** Quicksort

Example of Heap-Increase-Key



Shellsort **Heapsort** Quicksort

Priority Queues

Heap-Increase-Key(A, i, key)

- 1: if key < A[i] then
- 2: error "new key is smaller than current key"
- 3: A[i] = key
- 4: while i > 1 and A[Parent(i)] < A[i] do
- 5: $A[i] \leftrightarrow A[Parent(i)]$
- $6: \qquad i = Parent(i)$

ロ * 4日 * 4日 * 4日 * 日 * 900

Shellsort Heapsort Quicksort

Contents

Basic Concepts

Simple Sorting Algorithms

Efficient Sorting Algorithms

Shellsort Heapsort Quicksort

Summary

・ロト (周) (日) (日) 日 ののの

Shellsort Heapsort Quicksort

General idea:

- Arbitrarily choose an element x in the unsorted set for comparison.
- Divide the unsorted elements into two parts: $\leq x$ and > x.
- Recursively use Quicksort for the above two parts.

クタウ ヨー・ヨ・・ヨ・ (日・・日・

Shellsort Heapsort Quicksort

General idea:

- Arbitrarily choose an element x in the unsorted set for comparison.
- Divide the unsorted elements into two parts: $\leq x$ and > x.
- ▶ Recursively use Quicksort for the above two parts.

$\operatorname{Quicksort}(A, p, r)$

- 1: if p < r then
- 2: q = Partition(A, p, r)
- 3: Quicksort(A, p, q 1)
- 4: Quicksort(A, q+1, r)

Shellsort Heapsort Quicksort

Partition

 $\begin{array}{ll} Partition(A, p, r)\\ 1: \ x = A[r] & // \ pivot \ element\\ 2: \ i = p-1\\ 3: \ for \ j = p \ to \ r-1 \ do\\ 4: & \ if \ A[j] \leq x \ then\\ 5: & \ i = i+1\\ 6: & \ A[i] \leftrightarrow A[j]\\ 7: \ A[i+1] \leftrightarrow A[r]\\ 8: \ return \ i+1 \end{array}$

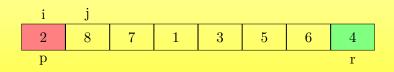
ロト 4 同 ト 4 日 ト 4 日 ト 目 うくの

Shellsort Heapsort Quicksort

Example of Partition

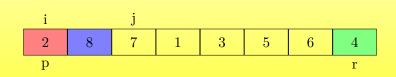
Shellsort Heapsort Quicksort

Example of Partition



Shellsort Heapsort Quicksort

Example of Partition

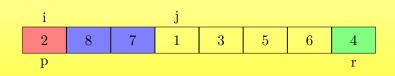


Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 46/57

・ロト・日本・ヨト・ヨー・ショー・

Shellsort Heapsort Quicksort

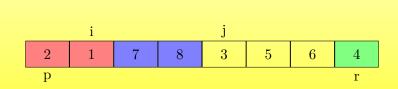
Example of Partition



Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 46/57

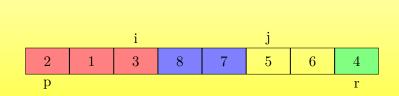
Shellsort Heapsort Quicksort

Example of Partition



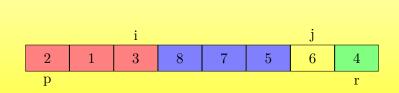
Shellsort Heapsort Quicksort

Example of Partition



Shellsort Heapsort Quicksort

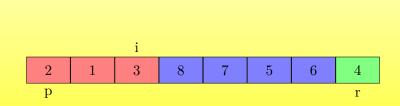
Example of Partition



Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 46/57

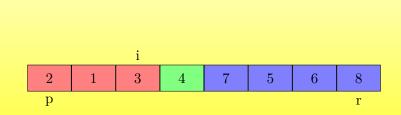
Shellsort Heapsort Quicksort

Example of Partition



Shellsort Heapsort Quicksort

Example of Partition



Shellsort Heapsort Quicksort

Performance of Quicksort

Worst-case partitioning

The worst-case behavior for quicksort occurs when the partitioning routine produces one subproblem with n-1 elements and one with 0 elements. The partitioning costs $\Theta(n)$ time, the recurrence for the running time is

$$\begin{split} T(n) &= T(n-1) + T(0) + \Theta(n) \\ &= T(n-1) + \Theta(n) \\ &= \Theta(n^2). \end{split}$$

Shellsort Heapsort Quicksort

Performance of Quicksort

Best-case partitioning

In the most even possible split, Partition produces two subproblems, each of size no more than n/2, since one is of size $\lfloor n/2 \rfloor$ and one of size $\lceil n/2 \rceil - 1$. In this case, quicksort runs much faster. The recurrence for the running time is then

$$\begin{split} T(n) &= 2T(n/2) + \Theta(n) \\ &= \Theta(n \lg n). \end{split}$$

Shellsort Heapsort Quicksort

Performance of Quicksort

Balanced partitioning

What if the split is always $\frac{1}{10}:\frac{9}{10}$? The recurrence for the running time is

$$\begin{split} \mathbf{T}(\mathbf{n}) &= \mathbf{T}(\frac{1}{10}\mathbf{n}) + \mathbf{T}(\frac{9}{10}\mathbf{n}) + \boldsymbol{\Theta}(\mathbf{n}) \\ &= \boldsymbol{\Theta}(\mathbf{n} \lg \mathbf{n}). \end{split}$$

Shellsort Heapsort Quicksort

A Randomized Version of Quicksort

- Randomized-Partition(A, p, r)
- 1: i = Random(p, r)
- $2 : \ A[r] \leftrightarrow A[i]$
- 3: return Partition(A,p,r)

Randomized-Quicksort(A,p,r)

- 1: if p < r then
- 2: q = Randomized-Partition(A, p, r)
- 3: Randomized-Quicksort(A, p, q 1)
- 4: Randomized-Quicksort(A, q+1, r)

Shellsort Heapsort Quicksort

Analysis of Quicksort

Worst-case analysis

We saw that a worst-case split at every level of recursion in quicksort produces a $\Theta(n^2)$ running time, which, intuitively, is the worst-case running time of the algorithm.

Using the substitution method (see Section 4.3), we can show that the running time of quicksort is $O(n^2)$.

Shellsort Heapsort Quicksort

Analysis of Quicksort

Let T(n) be the worst-case time for the procedure Quicksort on an input of size n. We have

$$\begin{split} \Gamma(\mathbf{n}) &= \max_{0 \leq q \leq n-1} (\mathbf{T}(\mathbf{q}) + \mathbf{T}(\mathbf{n}-\mathbf{q}-1)) + \Theta(\mathbf{n}) \\ &\leq \max_{0 \leq q \leq n-1} (\mathbf{c}\mathbf{q}^2 + \mathbf{c}(\mathbf{n}-\mathbf{q}-1)^2 + \Theta(\mathbf{n})) \\ &= \mathbf{c} \cdot \max_{0 \leq q \leq n-1} (\mathbf{q}^2 + (\mathbf{n}-\mathbf{q}-1)^2 + \Theta(\mathbf{n})) \\ &\leq \mathbf{c}\mathbf{n}^2 - \mathbf{c}(2\mathbf{n}-1) + \Theta(\mathbf{n}) \leq \mathbf{c}\mathbf{n}^2. \end{split}$$

Shellsort Heapsort Quicksort

Analysis of Quicksort

Running time and comparisons

Rename the elements of the array A as $z_1, z_2, ..., z_n$, with z_i being the ith smallest element (assuming distinct elements). $Z_{ij} = \{z_i, z_{i+1}, ..., z_j\}$ to be the set of elements between z_i and z_j . We define

 $X_{ij} = I\{z_i \text{ is compared to } z_j\}.$

Since each pair is compared at most once, we can easily characterize the total number of comparisons performed by the algorithm:

$$X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}.$$

Shellsort Heapsort Quicksort

Analysis of Quicksort

$$\begin{split} \mathbf{E}[\mathbf{X}] &= \mathbf{E}\left[\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\mathbf{X}_{ij}\right] = \sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\mathbf{E}[\mathbf{X}_{ij}] \\ &= \sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\Pr\{\mathbf{z}_i \text{ is compared to } \mathbf{z}_j\} \end{split}$$

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 54/57

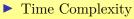
・ロト ・ 日 ・ と こ ・ と う く つ く つ ・

Shellsort Heapsort Quicksort

Analysis of Quicksort

$$\begin{split} \mathrm{E}[\mathrm{X}] &= \mathrm{E}\left[\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\mathrm{X}_{ij}\right] = \sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\mathrm{E}[\mathrm{X}_{ij}] \\ &= \sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\mathrm{Pr}\{z_{i} \text{ is compared to } z_{j}\} \\ &= \sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\mathrm{Pr}\{z_{i} \text{ or } z_{j} \text{ is first pivot chosen from } Z_{ij}\} \\ &= \sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\frac{2}{j-i+1} = \sum_{i=1}^{n-1}\sum_{k=1}^{n-i}\frac{2}{k+1} \\ &< \sum_{i=1}^{n-1}\sum_{k=1}^{n}\frac{2}{k} = \sum_{i=1}^{n-1}\mathrm{O}(\lg n) = \mathrm{O}(n\lg n). \end{split}$$

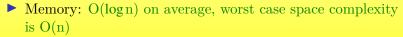
Shellsort Heapsort **Quicksort**



▶ Best: $O(n \log n)$

• Average: $O(n \log n)$

• Worst: $O(n^2)$



▶ Stable: stable versions exist

ロト 4月 1 4日 1 4日 1 日 りんの

Summary

Name	Average	Worst	Stable	Method
Insertion Sort	$O(n^2)$	$O(n^2)$	Yes	Insertion
Selection Sort	$O(n^2)$	$O(n^2)$	No	Selection
Bubble Sort	$O(n^2)$	$O(n^2)$	Yes	Exchanging
Merge sort	$O(n\log n)$	$O(n\log n)$	Yes	Merging
Shellsort	(*)	$O(n^{4/3})$ (*)	No	Insertion
Heapsort	$O(n \log n)$	$O(n \log n)$	No	Selection
Quicksort	$O(n\log n)$	$O(n^2)$	Exist	Partitioning

*The time complexity of shellsort depends on the selected gap sequence.

A sorting algorithm animation website: https://www.toptal.com/developers/sorting-algorithms

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 57/57