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Lower Bounds for Sorting

comparison sorts:
We have introduced several algorithms that can sort n

numbers in Ω(n lgn) time, which share an interesting property:
the sorted order they determine is based only on comparisons
between the input elements.
▶ Section 8.1, any comparison sort must make Ω(n lgn)

comparisons in the worst case to sort n elements.
▶ Sections 8.2, 8.3, and 8.4 examine three sorting algorithms

—counting sort, radix sort, and bucket sort—that run in
linear time.
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Lower Bounds for Sorting

In a comparison sort, without loss of generality, we assume
that all of the input elements are distinct, so all comparisons of
two elements ai and aj will have the form ai < aj or ai > aj.

We can view comparison sorts abstractly in terms of
decision trees. A decision tree is a full binary tree that
represents the comparisons between elements.
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Decision Tree

Figure: The decision tree for insertion sort operating on three
elements. The shaded path indicates the decisions made when sorting
the input sequence < a1 = 6; a2 = 8; a3 = 5 >.
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Lower Bounds for Sorting

The length of the longest simple path from the root of a
decision tree to any of its reachable leaves represents the
worst-case number of comparisons that the corresponding
sorting algorithm performs.

A lower bound on the heights of all decision trees in which
each permutation appears as a reachable leaf is therefore a lower
bound on the running time of any comparison sort algorithm.
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Theorem 8.1: Any comparison sort algorithm requires Ω(n lgn)
comparisons in the worst case.
Proof:
▶ Consider a decision tree of height h with l reachable leaves

corresponding to a comparison sort on n elements;
▶ Each of the n! permutations of the input appears as some

leaf, so n! ≤ l
▶ A binary tree of height h has no more than 2h leaves, so

n! ≤ l ≤ 2h (1)
h ≥ log(n!) = Ω(n logn) (2)
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Example

Counting Sort

Assumption:
Each of the n input elements is an integer in the range 0 to

k, for some integer k.
Basic idea:

For each input element x, count the number of elements
≤ x.

In the counting sort, the input is an array A[1 . . .n] and two
other arrays are required: the array B[1 . . .n] holds the sorted
output, and the array C[1 . . .n] provides temporary working
storage
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Counting Sort - Analysis

COUNTING-SORT(A,B,k)
1: for i = 0 to k do
2: C[i] = 0
3: for j = 1 to A.length do
4: C[A[j]] = C[A[j]]+1
5: //C[i] now contains the number of elements equal to i.
6: for i = 1 to k do
7: C[i]=C[i]+C[i-1]
8: //C[i] now contains the number of elements less than or equal

to i.
9: for j = A.length to 1 do

10: B[C[A[j]]] = A[j]
11: C[A[j]] = C[A[j]]−1
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Counting Sort - Example

A 2 5 3 0 2 3 0 3

1 2 3 4 5 6 7 8

B

C

C 2 0 2 3 0 1

0 1 2 3 4 5
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Counting Sort - Example

A 2 5 3 0 2 3 0 3

1 2 3 4 5 6 7 8

B

C

C 2 2 4 7 7 8

0 1 2 3 4 5
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Counting Sort - Example

A 2 5 3 0 2 3 0 3

1 2 3 4 5 6 7 8

B 3

C

C 2 2 4 6 7 8

0 1 2 3 4 5
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Counting Sort - Example

A 2 5 3 0 2 3 0 3

1 2 3 4 5 6 7 8

B 0 3
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C 1 2 4 6 7 8
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Counting Sort - Example

A 2 5 3 0 2 3 0 3

1 2 3 4 5 6 7 8

B 0 3 3

C

C 1 2 4 5 7 8
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Counting Sort - Analysis

COUNTING-SORT(A,B,k)
1: for i = 0 to k do
2: C[i] = 0 //Θ(k)
3: for j = 1 to A.length do
4: C[A[j]] = C[A[j]]+1 //Θ(n)
5: //C[i] now contains the number of elements equal to i.
6: for i = 1 to k do
7: C[i]=C[i]+C[i-1] //Θ(k)
8: //C[i] now contains the number of elements less than or equal

to i.
9: for j = A.length to 1 do

10: B[C[A[j]]] = A[j]
11: C[A[j]] = C[A[j]]−1 //Θ(n)
12: Overall Time: Θ(n+k); Stable
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Radix Sort

Basic idea:
The algorithm used by the card-sorting machines. It sorts

n cards on a d-digit number;
Radix sort sorts on the least significant digit first and are

then combined into a single deck, then the entire deck is sorted
again on the second-least significant digit and recombined in a
like manner;

The process continues until the cards have been sorted on
all d digits.
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Radix Sort - Example

3 2 9

4 5 7

6 5 7

8 3 9

4 3 6

7 2 0

3 5 5
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Radix Sort - Analysis

Assumption:
Each element in the n-element array A has d digits, where

digit 1 is the lowest-order digit and digit d is the highest-order
digit.
RADIX-SORT(A,d)
1: for i = 1 to d do
2: use a stable sort to sort array A on digit i
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Radix Sort - Analysis

Lemma 8.3:
Given n d-digit numbers in which each digit can take on up

to k possible values, RADIX-SORT correctly sorts these
numbers in Θ(d(n+k)) time.
Proof:
▶ Each pass over n d-digit numbers takes time Θ(n+k)
▶ There are d passes, so the total time for radix sort is

Θ(d(n+k))
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Radix Sort - Analysis

Lemma 8.4:
Given n b-bit numbers and any positive integer r ≤ b,

RADIX-SORT correctly sorts these numbers in Θ((b/r)(n+2r)) time.
Proof:
▶ For a value r ≤ b, each key was viewed as having d = ⌈b/r⌉ digits

of r bits each;
▶ Each digit is an integer in the range 0 to 2r −1, so that we can

use counting sort with k = 2r −1;
▶ Each pass of counting sort takes time Θ(n+k) = Θ(n+2r), and

there are d passes.
▶ So the total running time is Θ((b/r)(n+2r)).
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Radix Sort - Analysis

For given values of n and b, how to choose the value of r, with
r ≤ b, that minimizes the expression (b/r)(n+2r).
▶ If b < ⌊logn⌋, choosing r = b yields a running time of

Θ((b/b)(n+2b)) = Θ(n).
▶ If b ≥ ⌊logn⌋, then choosing r = ⌊logn⌋, the running time is

Θ(bn/ logn).
Increasing r above ⌊logn⌋ yields a running time of
Ω(bn/ logn).
If decreasing r below ⌊logn⌋, then the b/r term increases
and the (n+2r) term remains at Θ(n).
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Selection of Sorting Algorithms

Is radix sort preferable to a comparison-based sorting
algorithm, such as quick-sort?
▶ If b = O(logn) and r ≈ logn, then radix sort’s running time

is Θ(n), which is better than quicksort’s average-case
running time of Θ(n logn).

▶ Although radix sort may make fewer passes than quicksort
over the n keys, each pass of radix sort may take longer
time.
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Selection of Sorting Algorithms

Which sorting algorithm is preferred depends on the
characteristics of the implementations, the underlying machine
and the input data.

For example, Radix sort that uses counting sort does not
sort in place, while many comparison sorts do. Thus, when
primary memory storage is at a premium, an in-place algorithm
such as quicksort may be preferable.
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Bucket Sort

Assumption:
The input is drawn from a uniform distribution over the

interval [0,1).
Basic idea:

Bucket sort divides the interval [0,1) into n equal-sized
subintervals, or buckets, and then distributes the n input
numbers into the buckets.

Finally, sort the numbers in each bucket and then go
through the buckets in order, listing the elements in each.
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Bucket Sort

BUCKET-SORT(A)
1: let B[0 . . .n−1] be a new array
2: n = A.length
3: for i = 0 to n−1 do
4: make B[i] an empty list
5: for i = 1 to n do
6: insert A[i] into list B[⌊n∗A[i]⌋]
7: for i = 0 to n−1 do
8: sort list B[i] with insertion sort
9: concatenate the lists B[0],B[1], . . . ,B[n−1] together in order
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Bucket Sort - Example
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Bucket Sort - Analysis

Running time: let ni be the random variable denoting the
number of elements placed in bucket B[i], the running time of
bucket sort is

T(n) = Θ(n)+
n−1
∑
i=0

O(n2
i )

Taking expectations of both sides

E[T(n)] = E
[
Θ(n)+

n−1
∑
i=0

O(n2
i )
]
= Θ(n)+

n−1
∑
i=0

O(E[n2
i ])
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Bucket Sort - Analysis

We claim that E[n2
i ] = 2−1/n.

Define indicator random variables. For i = 0,1, . . . ,n−1 and
j = 1,2, . . . ,n.

Xij = I{A[j] falls in bucket i}

Thus, ni = ∑n
j=1 Xij

E[n2
i ] = E

[(
∑n

j=1 Xij
)2]

= E
[
∑n

j=1 ∑n
k=1 XijXik

]
= ∑n

j=1 E[X2
ij]+∑1≤j≤n ∑1≤k≤n,j ̸=k E[XijXik]
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Bucket Sort - Analysis

Indicator random variable Xij is 1 with probability 1/n and 0
otherwise, and therefore

E[X2
ij] = 12 × 1

n +02 × (1− 1
n) =

1
n

when k ̸= j, the variables Xij and Xik are independent, and hence

E[XijXik] = E[Xij]E[Xik] =
1
n2
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E[n2
i ] =

n
∑
j=1

1
n + ∑

1≤j≤n
∑

1≤k≤n,k̸=j

1
n2

= 1+ n−1
n = 2− 1

n

Using this expected value, we conclude that the expected time
for bucket sort is Θ(n)+nO(2− 1

n) = Θ(n)
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