Introduction to Algorithms
Chapter 9 : Medians and Order Statistics

XiangYang Li and Haisheng Tan!

School of Computer Science and Technology
University of Science and Technology of China (USTC)

Fall Semester 2024

Introduction to Algorithms

Outline

Outline of Topics

9.1 Minimum and Maximum

9.2 Selection in Expected Linear Time
Overview
Analysis

9.3 Selection in Worst-case Linear Time
Overview
Analysis

Li and ng Tan Introduction to Algorithms

Outline

Selection Problem

» This chapter addresses the problem of selecting the i-th
order statistic from a set of n distinct numbers. We
formally specify the selection problem as follows:

Input: A set A of n (distinct) numbers and an integer i,
with 1 <i<n.

Output: The element x € A that is larger than exactly i— 1
other elements of A.

-Yang Li and Haisheng Tan Introduction to Algorithms

9.1 Minimum and Maximum

Minimum and Maximum

» To determine the minimum of a set of n elements, a lower
bound of comparisons is n— 1.
» The following procedure selects the minimum from the
array A, where A.length = n.
MINIMUM(A)
1: min = A[l]
2: for i =2 to A.length do
3 if min > AJi] then
4: min = A[i]
5

: return min

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

9.1 Minimum and Maximum

Simultaneous Minimum and Maximum

» In some applications, we must find both the minimum and
the maximum of a set of n elements.

» A simple solution: find the minimum and maximum
independently, using n — 1 comparisons for each, for a total
of 2n — 2 comparisons.

» In fact, we can find both the minimum and the maximum
using at most 3|n/2| comparisons.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

9.1 Minimum and Maximum

Simultaneous Minimum and Maximum

MAX-MIN(A)
1. if A[1] > A[2] then min = A[2],max = A[1]
2: else min = A[1], max = A[2]

3: fori=2to [n/2] do

4 if APRi—1] > A[2]

5 then if A[2i] < min then min = A[2i]

6: if A[2i— 1] > max then max = A[2i —1]

7 else if A[2i —1] < min then min = A[2i — 1]
8: if A[2i] > max then max = A[2i]

9: if n # 2|n/2] then if A[n] < min then min = A|n]
10: if A[n] > max then max = An]
11: return (min, max)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

9.1 Minimum and Maximum

Simultaneous Minimum and Maximum

» Total number of comparisons:

If n is odd, then we perform 3|n/2| comparisons. If n
is even, we perform 1 initial comparison followed by
3(n—2)/2 comparisons, for a total of 3n/2 —2. Thus, in
either case, the total number of comparisons is at most

3|n/2].

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Overview
9.2 Selection in Expected Linear Time Analysis

Selection in Expected Linear Time

» A divide-and-conquer algorithm for the selection problem:
RANDOMIZED-SELECT.

» The idea is to partition the input array recursively (as in
quick-sort).

» The difference is that quick-sort recursively processes both
sides of the partition, but RANDOMIZED-SELECT only
works on one side of the partition.

» Quick-sort has an expected running time of ®(nlogn), but
the expected time of RANDOMIZED-SELECT is ©(n).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Overview
9.2 Selection in Expected Linear Time Analysis

RANDOMIZED-SELECT

RANDOMIZED-SELECT(A, p,r, i)

1: if p==r1 then
2 return A[p]
3: ¢ =RANDOMIZED-PARTITION(A,p,r)
4: k=q—p+1
5: if i ==k then
6 return Alq] // the pivot value is the answer
7: if i <k then

8 return RANDOMIZED-SELECT(A, p,q — L,i)
9

: else
10: return RANDOMIZED-SELECT(A,q+ 1,r,i—k)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Overview
9.2 Selection in Expected Linear Time Analysis

RANDOMIZED-SELECT - Analysis

» The worst-case running time for RANDOMIZED-SELECT
is ®(n?), even to find the minimum, because we could be
extremely unlucky and always partition around the largest
remaining element, and partitioning takes ®(n) time.

» The expected running time for RANDOMIZED-SELECT
is O(n).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Overview
9.2 Selection in Expected Linear Time Analysis

RANDOMIZED-SELECT - Analysis

» The time required by RANDOMIZED-SELECT on an
input array Afp...r| of n elements is denoted by T(n).

» We define indicator random variables Xy where Xy =I{ the
subarray A[p...q| has exactly k elements }. So we have
E[Xx] = 1, Xi has the value 1 for exactly one value of k,
and it is 0 for all other k. When X = 1, two subarrays on
which we might recurse have sizes k—1 and n—k

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Overview
9.2 Selection in Expected Linear Time Analysis

RANDOMIZED-SELECT - Analysis

T(n) < Yh_, Xu(T(max(k—1,n—k)) +O(n))
- 22:1 Xk T(max(k —1,n—k)) +O(n)

E[T(n)] <E[},_, XkT(max(k—1,n—k))+O(n)]
= Zizl E[XyT(max(k—1,n—k))]+O(n)
=Y . EXyE[T(max(k—1,n—k))]+ O(n)

-y %E[T(max(k— 1,n—1))]+O(n)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Overview
9.2 Selection in Expected Linear Time Analysis

RANDOMIZED-SELECT - Analysis

k—1if k> [n/2],

max(k—1,n—k) = { n—kif k < [n/2]

O(n)

» Assume that T(n) < cn for some constant ¢ that satisfies
the initial conditions of the recurrence. Pick a constant a
such that the function described by the O(n) term above
(which describes the non-recursive component of the
running time of the algorithm) is bounded from above by
an for all n > 0.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Overview
9.2 Selection in Expected Linear Time Analysis

RANDOMIZED-SELECT - Analysis

E[T(n)] < %ZE:En/QJ ck+an
%(kYA >+an
:2nc<(n—21)n_(Ln/2J —21)Ln/2J)+ N
SQDC((n—Ql)n_(n/2—2)2(n/2—1))+an
R
S?)?Tn—i-%—i-anzcn—(%—g—an)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Overview
9.2 Selection in Expected Linear Time Analysis

RANDOMIZED-SELECT - Analysis

» For sufficiently large n, we have

c ¢
Z_a)> =

n(4 a) > >

» As long as we choose the constant ¢ so that ¢/4 —a > 0,
i.e., ¢ > 4a, we can divide both sides by c/4 —a, giving

c/2 2c
n> =
“c/i—a c—4a

> If we assume that T(n) = O(1) for n < 2 we have
T(n) = O(n).

> So any order statistic, and in particular the median, can be
determined on average in linear time.

-Yang Li and Haisheng Tan Introduction to Algorithms

Overview
Analysis
9.3 Selection in Worst-case Linear Time

Selection in Worst-case Linear Time

» We now examine a selection algorithm whose running time
is O(n) in the worst case. Like RANDOMIZED-SELECT,
the algorithm SELECT finds the desired element by
recursively partitioning the input array.

» The SELECT algorithm determines the i th smallest of an
input array of n > 1 distinct elements by executing the
following steps. (If n =1, then SELECT merely returns its
only input value as the i th smallest.)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Overview
Analysis
9.3 Selection in Worst-case Linear Time

Selection in Worst-case Linear Time

» 1. Divide the n elements of the input array into |n/5|
groups of 5 elements each and at most one group made up
of the remaining n mod 5 elements.

» 2. Find the median of each of the |n/5] groups.

» 3. Use SELECT recursively to find the median x of the
|n/5] medians found in step 2.

» 4. Partition the input array around the median-of-medians
x using the modified version of PARTITION. So that x is
the kth smallest element and there are n —k elements on
the high side and k — 1 elements on the low side.

> 5. If i =k, then return x. Otherwise, use SELECT
recursively to find the i th smallest element on the low side
if i <k, or the (i—k) th smallest element on the high side if
i>k.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Overview
Analysis
9.3 Selection in Worst-case Linear Time

Selection in Worst-case Linear Time - Analysis

» To analyze the running time of SELECT, we first
determine a lower bound on the number of elements that
are greater than the partitioning element x.

» At least half of the [n/5] groups contribute 3 elements that
are greater than x, except for the one group that has fewer
than 5 elements if 5 does not divide n exactly, and the one
group containing x itself. So the number of elements
greater than x is at least

1 _n 3n
Ly g)p 20
3 < [2 [51—‘ — 10 0
» So in the worst case, SELECT is called recursively on at
most 7“ 5 + 6 elements in step 5.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Overview
Analysis
9.3 Selection in Worst-case Linear Time

Selection in Worst-case Linear Time - Analysis

> Steps 1, 2, and 4 take O(n) time.

» Step 3 takes time T([n/5]), and step 5 takes time at most
T(7n/1046), assuming that T is monotonically increasing

> Assume that any input of 140 or fewer elements requires

O(1) time.
» So we have the recurrence
0(1) if n <140,
T(n) <)
T([n/5]) +T(7n/10+6)+O(n) if n > 140.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 19/22

Overview
Analysis
9.3 Selection in Worst-case Linear Time

Selection in Worst-case Linear Time - Analysis

» Assuming that T(n) < cn for some suitably large constant c
and all n < 140.

» Pick a constant a such that the function described by the
O(n) term above is bounded above by an for all n > 0.

» So we have

T(n) <c[n/5]+¢(7n/104+6)+an
<cn/5+c+T7cn/10+46¢+an
=9cn/10+ 7c+an
=cn+ (—cn/10+ 7c+an)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Overview
Analysis
9.3 Selection in Worst-case Linear Time

Selection in Worst-case Linear Time - Analysis

» Thus T(n) is at most cn if(—en/10+ 7c+an < 0)
¢ >10a(n/(n—"70))when n > 70

Because n > 140 n/(n—70) <2
So choosing ¢ > 20a will satisfy inequality.

» The worst-case running time of SELECT is therefore linear.

» The algorithm is still correct if each group has r elements
where 1 is odd and is not less than 5.

-Yang Li and Haisheng Tan Introduction to Algorithms

9.3 Selection in Worst-case Linear Time

Selection in Worst-case Linear Time - Analysis

» Sorting requires Q(nlogn) time in the comparison model,
even on average, and the linear-time sorting algorithms in
Chapter 8 make assumptions about the input.

» But the linear-time selection algorithms in this chapter do
not require any assumptions about the input.

» The running time is linear because these algorithms do not
sort.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

	Outline
	9.1 Minimum and Maximum
	9.2 Selection in Expected Linear Time
	Overview
	Analysis

	9.3 Selection in Worst-case Linear Time
	Overview
	Analysis

