
Outline
9.1 Minimum and Maximum

9.2 Selection in Expected Linear Time
9.3 Selection in Worst-case Linear Time

Introduction to Algorithms
Chapter 9 : Medians and Order Statistics

XiangYang Li and Haisheng Tan1

School of Computer Science and Technology
University of Science and Technology of China (USTC)

Fall Semester 2024

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 1 / 22

Outline
9.1 Minimum and Maximum

9.2 Selection in Expected Linear Time
9.3 Selection in Worst-case Linear Time

Outline of Topics

9.1 Minimum and Maximum

9.2 Selection in Expected Linear Time
Overview
Analysis

9.3 Selection in Worst-case Linear Time
Overview
Analysis

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 2 / 22

Outline
9.1 Minimum and Maximum

9.2 Selection in Expected Linear Time
9.3 Selection in Worst-case Linear Time

Selection Problem

▶ This chapter addresses the problem of selecting the i-th
order statistic from a set of n distinct numbers. We
formally specify the selection problem as follows:
Input: A set A of n (distinct) numbers and an integer i,
with 1 ≤ i ≤ n.
Output: The element x ∈ A that is larger than exactly i−1
other elements of A.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 3 / 22

Outline
9.1 Minimum and Maximum

9.2 Selection in Expected Linear Time
9.3 Selection in Worst-case Linear Time

Minimum and Maximum

▶ To determine the minimum of a set of n elements, a lower
bound of comparisons is n−1.

▶ The following procedure selects the minimum from the
array A, where A.length = n.
MINIMUM(A)
1: min = A[1]
2: for i = 2 to A.length do
3: if min > A[i] then
4: min = A[i]
5: return min

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 4 / 22

Outline
9.1 Minimum and Maximum

9.2 Selection in Expected Linear Time
9.3 Selection in Worst-case Linear Time

Simultaneous Minimum and Maximum

▶ In some applications, we must find both the minimum and
the maximum of a set of n elements.

▶ A simple solution: find the minimum and maximum
independently, using n−1 comparisons for each, for a total
of 2n−2 comparisons.

▶ In fact, we can find both the minimum and the maximum
using at most 3⌊n/2⌋ comparisons.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 5 / 22

Outline
9.1 Minimum and Maximum

9.2 Selection in Expected Linear Time
9.3 Selection in Worst-case Linear Time

Simultaneous Minimum and Maximum

MAX-MIN(A)
1: if A[1]> A[2] then min = A[2],max = A[1]
2: else min = A[1],max = A[2]
3: for i = 2 to ⌊n/2⌋ do
4: if A[2i−1]> A[2i]
5: then if A[2i]< min then min = A[2i]
6: if A[2i−1]> max then max = A[2i−1]
7: else if A[2i−1]< min then min = A[2i−1]
8: if A[2i]> max then max = A[2i]
9: if n ≠ 2⌊n/2⌋ then if A[n]< min then min = A[n]

10: if A[n]> max then max = A[n]
11: return (min,max)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 6 / 22

Outline
9.1 Minimum and Maximum

9.2 Selection in Expected Linear Time
9.3 Selection in Worst-case Linear Time

Simultaneous Minimum and Maximum

▶ Total number of comparisons:
If n is odd, then we perform 3⌊n/2⌋ comparisons. If n

is even, we perform 1 initial comparison followed by
3(n−2)/2 comparisons, for a total of 3n/2−2. Thus, in
either case, the total number of comparisons is at most
3⌊n/2⌋.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 7 / 22

Outline
9.1 Minimum and Maximum

9.2 Selection in Expected Linear Time
9.3 Selection in Worst-case Linear Time

Overview
Analysis

Selection in Expected Linear Time

▶ A divide-and-conquer algorithm for the selection problem:
RANDOMIZED-SELECT.

▶ The idea is to partition the input array recursively (as in
quick-sort).

▶ The difference is that quick-sort recursively processes both
sides of the partition, but RANDOMIZED-SELECT only
works on one side of the partition.

▶ Quick-sort has an expected running time of Θ(n logn), but
the expected time of RANDOMIZED-SELECT is Θ(n).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 8 / 22

Outline
9.1 Minimum and Maximum

9.2 Selection in Expected Linear Time
9.3 Selection in Worst-case Linear Time

Overview
Analysis

RANDOMIZED-SELECT

RANDOMIZED-SELECT(A,p,r, i)
1: if p == r then
2: return A[p]
3: q =RANDOMIZED-PARTITION(A,p,r)
4: k = q−p+1
5: if i == k then
6: return A[q] // the pivot value is the answer
7: if i < k then
8: return RANDOMIZED-SELECT(A,p,q−1, i)
9: else

10: return RANDOMIZED-SELECT(A,q+1,r, i−k)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 9 / 22

Outline
9.1 Minimum and Maximum

9.2 Selection in Expected Linear Time
9.3 Selection in Worst-case Linear Time

Overview
Analysis

RANDOMIZED-SELECT - Analysis

▶ The worst-case running time for RANDOMIZED-SELECT
is Θ(n2), even to find the minimum, because we could be
extremely unlucky and always partition around the largest
remaining element, and partitioning takes Θ(n) time.

▶ The expected running time for RANDOMIZED-SELECT
is Θ(n).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 10 / 22

Outline
9.1 Minimum and Maximum

9.2 Selection in Expected Linear Time
9.3 Selection in Worst-case Linear Time

Overview
Analysis

RANDOMIZED-SELECT - Analysis

▶ The time required by RANDOMIZED-SELECT on an
input array A[p . . .r] of n elements is denoted by T(n).

▶ We define indicator random variables Xk where Xk = I{ the
subarray A[p . . .q] has exactly k elements }. So we have
E[Xk] =

1
n , Xk has the value 1 for exactly one value of k,

and it is 0 for all other k. When Xk = 1, two subarrays on
which we might recurse have sizes k−1 and n−k

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 11 / 22

Outline
9.1 Minimum and Maximum

9.2 Selection in Expected Linear Time
9.3 Selection in Worst-case Linear Time

Overview
Analysis

RANDOMIZED-SELECT - Analysis

T(n)≤ ∑n
k=1 Xk(T(max(k−1,n−k))+O(n))

= ∑n
k=1 XkT(max(k−1,n−k))+O(n)

E[T(n)]≤ E[∑n
k=1 XkT(max(k−1,n−k))+O(n)]

= ∑n
k=1 E[XkT(max(k−1,n−k))]+O(n)

= ∑n
k=1 E[Xk]E[T(max(k−1,n−k))]+O(n)

= ∑n
k=1

1
nE[T(max(k−1,n−k))]+O(n)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 12 / 22

Outline
9.1 Minimum and Maximum

9.2 Selection in Expected Linear Time
9.3 Selection in Worst-case Linear Time

Overview
Analysis

RANDOMIZED-SELECT - Analysis

max(k−1,n−k) =
{

k−1 if k > ⌈n/2⌉,
n−k if k ≤ ⌈n/2⌉

E[T(n)]≤ 2
n

n−1
∑

k=⌊n/2⌋
E(T(k))+O(n)

▶ Assume that T(n)≤ cn for some constant c that satisfies
the initial conditions of the recurrence. Pick a constant a
such that the function described by the O(n) term above
(which describes the non-recursive component of the
running time of the algorithm) is bounded from above by
an for all n > 0.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 13 / 22

Outline
9.1 Minimum and Maximum

9.2 Selection in Expected Linear Time
9.3 Selection in Worst-case Linear Time

Overview
Analysis

RANDOMIZED-SELECT - Analysis

E[T(n)]≤ 2
n ∑n−1

k=⌊n/2⌋ ck+an

=
2c
n

(
∑n−1

k=1 k−∑⌊n/2⌋−1
k=1 k

)
+an

=
2c
n

((n−1)n
2 − (⌊n/2⌋−1)⌊n/2⌋

2

)
+an

≤ 2c
n

((n−1)n
2 − (n/2−2)(n/2−1)

2

)
+an

= c
(3n

4 +
1
2 − 2

n

)
+an

≤ 3cn
4 +

c
2 +an = cn−

(cn
4 − c

2 −an
)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 14 / 22

Outline
9.1 Minimum and Maximum

9.2 Selection in Expected Linear Time
9.3 Selection in Worst-case Linear Time

Overview
Analysis

RANDOMIZED-SELECT - Analysis

▶ For sufficiently large n, we have

n(c
4 −a)≥ c

2
▶ As long as we choose the constant c so that c/4−a > 0,

i.e., c > 4a, we can divide both sides by c/4−a, giving

n ≥ c/2
c/4−a =

2c
c−4a

▶ If we assume that T(n) = O(1) for n < 2c
c−4a , we have

T(n) = O(n).
▶ So any order statistic, and in particular the median, can be

determined on average in linear time.
Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 15 / 22

Outline
9.1 Minimum and Maximum

9.2 Selection in Expected Linear Time
9.3 Selection in Worst-case Linear Time

Overview
Analysis

Selection in Worst-case Linear Time

▶ We now examine a selection algorithm whose running time
is O(n) in the worst case. Like RANDOMIZED-SELECT,
the algorithm SELECT finds the desired element by
recursively partitioning the input array.

▶ The SELECT algorithm determines the i th smallest of an
input array of n > 1 distinct elements by executing the
following steps. (If n = 1, then SELECT merely returns its
only input value as the i th smallest.)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 16 / 22

Outline
9.1 Minimum and Maximum

9.2 Selection in Expected Linear Time
9.3 Selection in Worst-case Linear Time

Overview
Analysis

Selection in Worst-case Linear Time
▶ 1. Divide the n elements of the input array into ⌊n/5⌋

groups of 5 elements each and at most one group made up
of the remaining n mod 5 elements.

▶ 2. Find the median of each of the ⌊n/5⌋ groups.
▶ 3. Use SELECT recursively to find the median x of the

⌊n/5⌋ medians found in step 2.
▶ 4. Partition the input array around the median-of-medians

x using the modified version of PARTITION. So that x is
the kth smallest element and there are n−k elements on
the high side and k−1 elements on the low side.

▶ 5. If i = k, then return x. Otherwise, use SELECT
recursively to find the i th smallest element on the low side
if i < k, or the (i−k) th smallest element on the high side if
i > k.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 17 / 22

Outline
9.1 Minimum and Maximum

9.2 Selection in Expected Linear Time
9.3 Selection in Worst-case Linear Time

Overview
Analysis

Selection in Worst-case Linear Time - Analysis

▶ To analyze the running time of SELECT, we first
determine a lower bound on the number of elements that
are greater than the partitioning element x.

▶ At least half of the ⌈n/5⌉ groups contribute 3 elements that
are greater than x, except for the one group that has fewer
than 5 elements if 5 does not divide n exactly, and the one
group containing x itself. So the number of elements
greater than x is at least

3
(⌈1

2⌈
n
5 ⌉

⌉
−2

)
≥ 3n

10 −6

▶ So in the worst case, SELECT is called recursively on at
most 7n

10 +6 elements in step 5.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 18 / 22

Outline
9.1 Minimum and Maximum

9.2 Selection in Expected Linear Time
9.3 Selection in Worst-case Linear Time

Overview
Analysis

Selection in Worst-case Linear Time - Analysis

▶ Steps 1, 2, and 4 take O(n) time.
▶ Step 3 takes time T(⌈n/5⌉), and step 5 takes time at most

T(7n/10+6), assuming that T is monotonically increasing
▶ Assume that any input of 140 or fewer elements requires

O(1) time.
▶ So we have the recurrence

T(n)≤
{

Θ(1) if n ≤ 140,
T(⌈n/5⌉)+T(7n/10+6)+O(n) if n > 140.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 19 / 22

Outline
9.1 Minimum and Maximum

9.2 Selection in Expected Linear Time
9.3 Selection in Worst-case Linear Time

Overview
Analysis

Selection in Worst-case Linear Time - Analysis

▶ Assuming that T(n)≤ cn for some suitably large constant c
and all n ≤ 140.

▶ Pick a constant a such that the function described by the
O(n) term above is bounded above by an for all n > 0.

▶ So we have

T(n)≤ c⌈n/5⌉+ c(7n/10+6)+an
≤ cn/5+ c+7cn/10+6c+an
= 9cn/10+7c+an
= cn+(−cn/10+7c+an)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 20 / 22

Outline
9.1 Minimum and Maximum

9.2 Selection in Expected Linear Time
9.3 Selection in Worst-case Linear Time

Overview
Analysis

Selection in Worst-case Linear Time - Analysis

▶ Thus T(n) is at most cn if(−cn/10+7c+an ≤ 0)

c ≥ 10a(n/(n−70))when n > 70

Because n ≥ 140 n/(n−70)≤ 2
So choosing c ≥ 20a will satisfy inequality.

▶ The worst-case running time of SELECT is therefore linear.
▶ The algorithm is still correct if each group has r elements

where r is odd and is not less than 5.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 21 / 22

Outline
9.1 Minimum and Maximum

9.2 Selection in Expected Linear Time
9.3 Selection in Worst-case Linear Time

Overview
Analysis

Selection in Worst-case Linear Time - Analysis

▶ Sorting requires Ω(n logn) time in the comparison model,
even on average, and the linear-time sorting algorithms in
Chapter 8 make assumptions about the input.

▶ But the linear-time selection algorithms in this chapter do
not require any assumptions about the input.

▶ The running time is linear because these algorithms do not
sort.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 22 / 22

	Outline
	9.1 Minimum and Maximum
	9.2 Selection in Expected Linear Time
	Overview
	Analysis

	9.3 Selection in Worst-case Linear Time
	Overview
	Analysis

