Introduction to Algorithms

Chapter 9 : Medians and Order Statistics

XiangYang Li and Haisheng $\rm Tan^1$

School of Computer Science and Technology University of Science and Technology of China (USTC)

Fall Semester 2024

 θ

 \equiv OQ

 \equiv

Outline of Topics

- 9.1 Minimum and Maximum
- 9.2 Selection in Expected Linear Time **Overview** Analysis
- 9.3 Selection in Worst-case Linear Time **Overview** Analysis

 $E = 990$

 $\mathcal{L}(\Xi)\models\mathcal{L}(\Xi)$

 α . Θ

Selection Problem

 \triangleright This chapter addresses the problem of selecting the i-th order statistic from a set of n distinct numbers. We formally specify the selection problem as follows: Input: A set A of n (distinct) numbers and an integer i, with $1 \leq i \leq n$.

Outline

Output: The element x *∈* A that is larger than exactly i*−*1 other elements of A.

 \overline{a}

Minimum and Maximum

- \blacktriangleright To determine the minimum of a set of n elements, a lower bound of comparisons is n*−*1.
- \blacktriangleright The following procedure selects the minimum from the array A , where A *.length* = n. MINIMUM(A)

1: $\min = A[1]$

- 2: for $i = 2$ to A.length do
- 3: if $\min > A[i]$ then
- 4: $\text{min} = \text{A[i]}$
- 5: return min

 \pm

 \Box

 \overline{a}

 \equiv

Simultaneous Minimum and Maximum

- ▶ In some applications, we must find both the minimum and the maximum of a set of n elements.
- \triangleright A simple solution: find the minimum and maximum independently, using n*−*1 comparisons for each, for a total of 2n*−*2 comparisons.
- \blacktriangleright In fact, we can find both the minimum and the maximum using at most 3*⌊*n*/*2*⌋* comparisons.

 α .

 $4.32 \times$

 $\lambda =$

 Q

Simultaneous Minimum and Maximum

$MAX-MIN(A)$ 1: if $A[1] > A[2]$ then $\min = A[2], \max = A[1]$ 2: else $\min = A[1], \max = A[2]$ 3: for $i = 2$ to $\lfloor n/2 \rfloor$ do 4: if A[2i*−*1] *>* A[2i] 5: then if $A[2i] < \min$ then $\min = A[2i]$ 6: if A[2i*−*1] *>* max then max = A[2i*−*1] 7: else if A[2i*−*1] *<* min then min = A[2i*−*1] 8: if $A[2i] > \max$ then $\max = A[2i]$ 9: if $n \neq 2\lfloor n/2 \rfloor$ then if $A[n] < \min$ then $\min = A[n]$ 10: if $A[n] > \max$ then $\max = A[n]$ 11: return (min*,*max) Α Xiang-Yang Li and Haisheng Tan Introduction to Algorithms $6 / 22$

 2990

 \equiv

Simultaneous Minimum and Maximum

 $\blacktriangleright\,$ Total number of comparisons:

If n is odd, then we perform $3|n/2|$ comparisons. If n is even, we perform 1 initial comparison followed by 3(n*−*2)*/*2 comparisons, for a total of 3n*/*2*−*2. Thus, in either case, the total number of comparisons is at most $3|n/2|$.

 \overline{a}

Selection in Expected Linear Time

- ▶ A divide-and-conquer algorithm for the selection problem: RANDOMIZED-SELECT.
- \triangleright The idea is to partition the input array recursively (as in quick-sort).
- ▶ The difference is that quick-sort recursively processes both sides of the partition, but RANDOMIZED-SELECT only works on one side of the partition.
- \blacktriangleright Quick-sort has an expected running time of $\Theta(n\log n),$ but the expected time of RANDOMIZED-SELECT is $\Theta(n)$.

Α

 \overline{a}

Ξ

 $E = 990$

RANDOMIZED-SELECT

```
RANDOMIZED-SELECT(A,p,r,i)
1: if p == r then
 2: return A[p]3: q =RANDOMIZED-PARTITION(A,p,r)
 4: k = q−p+1
5: if i == k then
6: return A[q] \frac{1}{1} the pivot value is the answer
7: if i < k then
8: return RANDOMIZED-SELECT(A,p,q−1,i)
9: else
10: return RANDOMIZED-SELECT(A,q+1,r,i−k)
                                           \Box\overline{a}\frac{1}{2} is a \frac{1}{2}Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 9 / 22
```
Overview Analysis

RANDOMIZED-SELECT - Analysis

- ▶ The worst-case running time for RANDOMIZED-SELECT is $\Theta(n^2)$, even to find the minimum, because we could be extremely unlucky and always partition around the largest remaining element, and partitioning takes $\Theta(n)$ time.
- ▶ The expected running time for RANDOMIZED-SELECT is $\Theta(n)$.

Overview Analysis

RANDOMIZED-SELECT - Analysis

- ▶ The time required by RANDOMIZED-SELECT on an input array $A[p...r]$ of n elements is denoted by $T(n)$.
- \blacktriangleright We define indicator random variables X_k where $X_k = I$ { the subarray A[p*...*q] has exactly k elements *}*. So we have $E[X_k] = \frac{1}{n}$, X_k has the value 1 for exactly one value of k, and it is 0 for all other k. When $X_k = 1$, two subarrays on which we might recurse have sizes k*−*1 and n*−*k

Overview Analysis

RANDOMIZED-SELECT - Analysis

$$
T(n) \le \sum_{k=1}^{n} X_k (T(max(k-1, n-k)) + O(n))
$$

= $\sum_{k=1}^{n} X_k T(max(k-1, n-k)) + O(n)$
 $E[T(n)] \le E[\sum_{k=1}^{n} X_k T(max(k-1, n-k)) + O(n)]$

$$
E[\sum_{k=1}^{n} X_k T(max(k-1, n-k)) + O(n)]
$$

= $\sum_{k=1}^{n} E[X_k T(max(k-1, n-k))] + O(n)$
= $\sum_{k=1}^{n} E[X_k] E[T(max(k-1, n-k))] + O(n)$
= $\sum_{k=1}^{n} \frac{1}{n} E[T(max(k-1, n-k))] + O(n)$

 $\mathfrak{c} \subsetneqq \mathfrak{b} \quad \mathfrak{c} \subsetneqq \mathfrak{b}$

 \Box : $\overline{\mathbb{P}}$

Overview Analysis

RANDOMIZED-SELECT - Analysis

$$
\begin{aligned} \max(k-1,n-k) &= \begin{cases} k-1 \text{ if } k > \lceil n/2 \rceil, \\ n-k \text{ if } k \leq \lceil n/2 \rceil \end{cases} \\ E[T(n)] &\leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E(T(k)) + O(n) \end{aligned}
$$

► Assume that $T(n)$ \leq cn for some constant c that satisfies the initial conditions of the recurrence. Pick a constant a such that the function described by the $O(n)$ term above (which describes the non-recursive component of the running time of the algorithm) is bounded from above by an for all $n > 0$.

 \overline{a}

Overview Analysis

RANDOMIZED-SELECT - Analysis

$$
E[T(n)] \leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} ck + an
$$

= $\frac{2c}{n} \left(\sum_{k=1}^{n-1} k - \sum_{k=1}^{\lfloor n/2 \rfloor -1} k \right) + an$
= $\frac{2c}{n} \left(\frac{(n-1)n}{2} - \frac{(\lfloor n/2 \rfloor -1) \lfloor n/2 \rfloor}{2} \right) + an$
 $\leq \frac{2c}{n} \left(\frac{(n-1)n}{2} - \frac{(n/2 - 2)(n/2 - 1)}{2} \right) + an$
= $c \left(\frac{3n}{4} + \frac{1}{2} - \frac{2}{n} \right) + an$
 $\leq \frac{3cn}{4} + \frac{c}{2} + an = cn - \left(\frac{cn}{4} - \frac{c}{2} - an \right)$

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms $14/22$

 \equiv 990

Overview Analysis

RANDOMIZED-SELECT - Analysis

 \triangleright For sufficiently large n, we have

$$
n(\frac{c}{4}-a)\geq \frac{c}{2}
$$

▶ As long as we choose the constant c so that c*/*4*−*a *>* 0, i.e., c *>* 4a, we can divide both sides by c*/*4*−*a, giving

$$
n \ge \frac{c/2}{c/4 - a} = \frac{2c}{c - 4a}
$$

- ▶ If we assume that $T(n) = O(1)$ for $n < \frac{2c}{c-4a}$, we have $T(n) = O(n)$.
- \triangleright So any order statistic, and in particular the median, can be determined on average in linear time.

 OQ

Selection in Worst-case Linear Time

- ▶ We now examine a selection algorithm whose running time is $O(n)$ in the worst case. Like RANDOMIZED-SELECT, the algorithm SELECT finds the desired element by recursively partitioning the input array.
- \triangleright The SELECT algorithm determines the i th smallest of an input array of $n > 1$ distinct elements by executing the following steps. (If $n = 1$, then SELECT merely returns its only input value as the i th smallest.)

Outline 9.2 Selection in Expected Linear Time 9.3 Selection in Worst-case Linear Time

Selection in Worst-case Linear Time

- \triangleright 1. Divide the n elements of the input array into $\lfloor n/5 \rfloor$ groups of 5 elements each and at most one group made up of the remaining n mod 5 elements.
- ▶ 2. Find the median of each of the *⌊*n*/*5*⌋* groups.
- ▶ 3. Use SELECT recursively to find the median x of the *⌊*n*/*5*⌋* medians found in step 2.
- ▶ 4. Partition the input array around the median-of-medians x using the modified version of PARTITION. So that x is the kth smallest element and there are n*−*k elements on the high side and k*−*1 elements on the low side.
- \triangleright 5. If i = k, then return x. Otherwise, use SELECT recursively to find the i th smallest element on the low side if i *<* k, or the (i*−*k) th smallest element on the high side if $i > k$. ÷

9.2 Selection in Expected Linear Time 9.3 Selection in Worst-case Linear Time

Overview Analysis

Selection in Worst-case Linear Time - Analysis

Outline

- ▶ To analyze the running time of SELECT, we first determine a lower bound on the number of elements that are greater than the partitioning element x.
- ▶ At least half of the $\lceil n/5 \rceil$ groups contribute 3 elements that are greater than x, except for the one group that has fewer than 5 elements if 5 does not divide n exactly, and the one group containing x itself. So the number of elements greater than x is at least

$$
3\Big(\Big\lceil\frac{1}{2}\big\lceil\frac{n}{5}\big\rceil\Big\rceil-2\Big)\geq \frac{3n}{10}-6
$$

 \blacktriangleright So in the worst case, SELECT is called recursively on at most $\frac{7n}{10}+6$ elements in step 5.

Overview Analysis

Selection in Worst-case Linear Time - Analysis

- \triangleright Steps 1, 2, and 4 take O(n) time.
- ▶ Step 3 takes time $T([n/5])$, and step 5 takes time at most $T(7n/10+6)$, assuming that T is monotonically increasing
- ▶ Assume that any input of 140 or fewer elements requires $O(1)$ time.
- \triangleright So we have the recurrence

$$
T(n) \le \begin{cases} \Theta(1) & \text{if } n \le 140, \\ T(\lceil n/5 \rceil) + T(7n/10 + 6) + O(n) & \text{if } n > 140. \end{cases}
$$

Overview Analysis

Selection in Worst-case Linear Time - Analysis

- Assuming that $T(n) \leq cn$ for some suitably large constant c and all $n \leq 140$.
- \blacktriangleright Pick a constant a such that the function described by the $O(n)$ term above is bounded above by an for all $n > 0$.
- \blacktriangleright So we have

 $T(n) \le c \lceil n/5 \rceil + c(7n/10+6) + an$ *≤* cn*/*5+c+7cn*/*10+6c+an $= 9cn/10+7c+an$ = cn+ (*−*cn*/*10+7c+an)

 OQ

Overview Analysis

Selection in Worst-case Linear Time - Analysis

▶ Thus T(n) is at most cn if(*−*cn*/*10+7c+an *≤* 0)

c *≥* 10a(n*/*(n*−*70))when n *>* 70

Because $n \ge 140$ n/(n − 70) ≤ 2 So choosing $c \geq 20a$ will satisfy inequality.

- ▶ The worst-case running time of SELECT is therefore linear.
- \triangleright The algorithm is still correct if each group has r elements where r is odd and is not less than 5.

Overview Analysis

Selection in Worst-case Linear Time - Analysis

- Sorting requires $\Omega(n \log n)$ time in the comparison model, even on average, and the linear-time sorting algorithms in Chapter 8 make assumptions about the input.
- \blacktriangleright But the linear-time selection algorithms in this chapter do not require any assumptions about the input.
- \blacktriangleright The running time is linear because these algorithms do not sort.