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Binary Trees

▶ Recursive definition
1. An empty tree is a binary tree
2. A node with at most two child subtrees is a binary tree
3. Only what you get from 1 by a finite number of applications of 2

is a binary tree

▶ Is this a binary tree?
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Binary Search Trees

▶ View today as data structures that can support dynamic set
operations
Search,Minimum,Maximum,Predecessor,Successor,Insert,and
Delete

▶ Can be used to build
Dictionaries
Priority Queues

▶ Basic operations take time proportional to the height of the
tree –O(h)
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BST–Representation

▶ Represented by a linked data structure of nodes
▶ root(T ) points to the root of tree T
▶ Each node contains field:

key
left - pointer to left child: root of left subtree
right - pointer to right child : root of right subtree
p - pointer to parent. p[root[T ]] = NIL (optional)
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Binary Search Tree Property

▶ Stored keys must satisfy
the binary search tree
property
1. ∀y in left subtree of x,

then key[y] ≤ key[x]
2. ∀y in right subtree of x,

then key[y] ≥ key[x]
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Inorder Traversal

▶ The binary search tree property allows the keys of a binary
search tree to be printed, in (monotonically increasing) order,
recursively

InorderTreeWalk(x)

1: if x ̸=NIL then
2: InorderTreeWalk(left[x])
3: print key[x]
4: InorderTreeWalk(right[x])

▶ How long does the walk take?
▶ Can you prove its correctness?
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Correctness of Inorder-Walk

▶ Must prove that it prints all elements, in order, and that it
terminates

▶ 1. By induction on size of tree, Size = 0: Easy
2. Size ≥ 1:

a. Prints left subtree in order by induction
b. Prints root, which comes after all elements in left subtree (still in

order)
c. Prints right subtree in order (all elements come after root, so still

in order)
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Preorder Traversal

▶ The binary search tree property allows the keys of a binary
search tree to be printed recursively

PreorderTreeWalk(x)

1: if x ̸=NIL then
2: print key[x]
3: PreorderTreeWalk(left[x])
4: PreorderTreeWalk(right[x])

▶ How long does the walk take?
▶ Can you prove its correctness?
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Postorder Traversal

▶ The binary search tree property allows the keys of a binary
search tree to be printed recursively

PostorderTreeWalk(x)

1: if x ̸=NIL then
2: PostorderTreeWalk(left[x])
3: PostorderTreeWalk(right[x])
4: print key[x]

▶ How long does the walk take?
▶ Can you prove its correctness?
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Querying a Binary Search Tree

▶ All dynamic-set search operations can be supported in O(h)
time

▶ h = Θ(lg n) for a balanced binary tree (and for an average
tree built by adding nodes in random order.)
1. Self-balanced binary search trees will have h = Θ(lg n)
2. Examples of such trees, red-black tree, AVL tree, 2-3 tree

▶ h = Θ(n) for an unbalanced tree that resembles a linear chain
of n nodes in the worst case
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Tree Search

TreeSearch(x, k),
x is a node, k is a value

1: if x =NIL or k = key[x] then
2: return x
3: if k < key[x] then
4: return TreeSearch(left[x], k)
5: else
6: return TreeSearch(right[x], k)

▶ Running time: O(h)
▶ Aside: tail-recursion
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Iterative Tree Search

IterativeTreeSearch(x, k)

1: while x ̸= NIL and k ̸= key[x] do
2: if k < key[x] then
3: x← left[x]
4: else
5: x← right[x]
6: return x

▶ The iterative tree search is more efficient on most computers
▶ The recursive tree search is more straightforward
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Finding Min & Max

▶ The binary-search-tree property guarantees that:
1. The minimum is located at the left-most node
2. The maximum is located at the right-most node

TreeMinimum(x)

1: while left ̸= NIL do
2: x← left[x]
3: return x

TreeMaximum(x)

1: while right ̸= NIL do
2: x← right[x]
3: return x

▶ Q: How long do they take?
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Predecessor and Successor

▶ Successor of node x is the node y such that key[y] is the
smallest key greater than key[x]

▶ The successor of the largest key is NIL
▶ Search consists of two cases:

1. If node x has a non-empty right subtree, then x’s successor is the
minimum in the right subtree of x

2. If node x has an empty right subtree, then:
a. As long as we move to the left up the tree (move up through right

children), we are visiting smaller keys
b. x’s successor yis the node that x is the predecessor of (x is the

maximum in y’s left subtree)
c. In other words, x’s successor y, is the lowest ancestor of x whose

left child is also an ancestor of x
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Pseudo-code for Successor

TreeSuccessor(x)

1: if right[x] ̸= NIL then
2: return TreeMinimum(right[x])
3: y← p[x]
4: while y ̸= NIL and x = right[y] do
5: x← y
6: y← p[y]
7: return y

▶ Code for predecessor is symmetric
▶ Running time: O(h)
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Insertion and Deletion

▶ Change the dynamic set
represented by a BST

▶ Ensure the
binary search tree property
holds after change

▶ Insertion is easier than
deletion
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BST Insertion –Pseudocode

TreeInsert(T, z)

1: y← NIL
2: x← root[T ]
3: while x ̸= NIL do
4: y← x
5: if key[z] < key[x] then
6: x← left[x]
7: else
8: x← right[x]
9: p[z]← y

10: if y = NIL then
11: root[T ]← z
12: else if key[z] < key[y] then
13: left[y]← z
14: else
15: right[y]← z
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Analysis of Insertion

▶ Initialization: O(1)
▶ While loop in lines 3-10 searches for place to insert z,

maintaining parent y. This takes O(h) time
▶ Lines 11-18 insert the value: O(1)
▶ Total: O(h) time to insert a node
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Exercise: Sorting Using BSTs

Sort(A)
1: for i← 1 to n do
2: TreeInsert(A[i ])
3: InorderTreeWalk(root)

▶ What are the worst case and best case running times?
▶ In practice, how would this compare to other sorting

algorithms?
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BST Deletion

▶ Case 0: if x has no children:
then remove x

▶ Case 1: if x has one child:
then make p[x] point to child

▶ Case 2: if x has two children (subtrees):
then swap x with its successor
perform case 0 or case 1 to delete it

▶ Total: O(h) time to delete a node
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BST Deletion – Pseudocode

TreeDelete(T, z)
1: if left[z] = NIL

or right[z] = NIL then
2: y← z
3: else
4: y← TreeSuccessor[z]
5: if left[y] ̸= NIL then
6: x← left[y]
7: else
8: x← right[y]

9: if x ̸= NIL then
10: p[x]← p[y]
11: if p[y] = NIL then
12: root[T ]← x
13: else if y← left[p[i ]] then
14: left[p[y]]← x
15: else
16: right[p[y]]← x
17: if y ̸= z then
18: key[z]← key[y]
19: return y
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Correctness of TreeDelete

▶ How do we know case 2 should go to case 0 or case 1 instead
of back to case 2?

Because when x has 2 children, its successor is the minimum
in its right subtree, and that successor has no left child (hence
0 or 1 child)

▶ Any other choice?
Equivalently, we could swap with predecessor instead of
successor. It might be good to alternate to avoid creating
lopsided tree
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Red-Black Trees: Overview

▶ Red-black trees are a variation of binary search trees to ensure
that the tree is balanced

▶ Height is O(lg n), where n is the number of nodes
▶ Operations take O(lg n) time in the worst case
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Red-Black Tree

▶ Binary search tree + 1 bit per node: the attribute color,
which is either red or black

▶ All other attributes of BSTs are inherited:
key, left, right, and p

▶ All empty trees (leaves) are colored black
1. We use a single sentinel, nil, for all the leaves of red-black tree

T, with color[nil ] = black
2. The root’s parent is also nil [T ]
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Red-Black Tree – Example
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Red-Black Properties

▶ 1. Every node is either red or black
▶ 2. The root is black
▶ 3. Every leaf (nil ) is black
· Note: this means every “real” node has 2 children

▶ 4. If a node is red, then both its children are black
· Note: can’t have 2 consecutive reds on a path

▶ 5. For each node, all paths from the node to descendant
leaves contain the same number of black nodes.
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Height of a Red-Black Tree

▶ Height of a node:
Number of edges in a longest path to
a leaf

▶ Black-height of a node x, bh(x):
Number of black nodes (including
nil [T ]) on the path from x to leaf, not
counting x

▶ Black-height of a red-black tree is the
black-height of its root:
By Property 5, black height is well
defined
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Height of Red-Black Trees

▶ What is the minimum black-height of a node with height h?
A height-h node has black-height ≥ h/2

▶ Theorem: A red-black tree with n internal nodes has height
h ≤ 2 lg(n + 1)
How do you suppose we’ll prove this?
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RB Trees: Proving Height Bound

▶ Prove: n-node RB tree has height h ≤ 2 lg(n + 1)
▶ Claim: A subtree rooted at a node x contains at least

2bh(x) − 1 internal nodes
▶ Proof by induction on height h
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RB Trees: Proving Height Bound

▶ Base step: x has height 0 (i.e., NULL leaf node)
1. So bh(x) = 0
2. So subtree contains 2bh(x) − 1 = 20 − 1 = 0 internal nodes

(TRUE)
▶ Inductive step: x has positive height and 2 children

1. Each child has black-height of bh(x) or bh(x)− 1
2. So the subtrees rooted at each child contain at least 2bh(x)−1 − 1

internal nodes
3. Thus subtree at x contains

(2bh(x)−1 − 1) + (2bh(x)−1 − 1) + 1 = 2bh(x) − 1 nodes (TRUE)
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RB Trees: Proving Height Bound

▶ Thus at the root of the red-black tree:
n ≥ 2bh(root) − 1⇒ n ≥ 2h/2 − 1⇒ h ≤ 2 lg(n + 1)

▶ Thus h = O(lg n)
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RB Trees: Worst-Case Time

▶ So we’ve proved that a red-black tree has O(lg n) height
▶ Corollary: These operations take O(lg n) time:

Minimum(), Maximum()
Successor(), Predecessor()
Search()

▶ Insert() and Delete():
1. Will also take O(lg n) time
2. But will need special care since they modify tree
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RB Trees: Rotation

▶ Our basic operation for changing tree structure is called
rotation:

▶ Preserves BST key ordering
▶ O(1) time...just changes some pointers
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RB Trees: Insertion

▶ Insertion: the basic idea
1. Insert x into tree, color x red
2. r-b property 2 could be violated (if x is root and red)

If so, no other property is violated, we make x black.
3. Otherwise,r-b property 4 might be violated (if p[x] red)

If so, move violation up tree until a place is found where it can
be fixed

4. Total time will be O(lg n)
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RB Insertion – Pseudocode I

RBInsert(T, x)
1: TreeInsert(T, x)
2: color[x]← RED
3: while x ̸= root[T ] and color[p[x]] = RED do
4: if p[x] = left[p[p[x]]] then
5: y← right[p[p[x]]]
6: if color[y] = RED then
7: color[p[x]]← BLACK
8: color[y]← BLACK
9: color[p[p[x]]]← RED

10: x← p[p[x]]
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RB Insertion – Pseudocode II

11: else
12: if x = right[p[x]] then
13: x← p[x]
14: LeftRotate(x)
15: color[p[x]]← BLACK
16: color[p[p[x]]]← RED
17: RightRotate p[p[x]]
18: else
19: same as above, but exchanging ‘right’ and ‘left’
20: color[root[T ]]← BLACK
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RB Insert: Case 1

▶ Case 1: “uncle” is red:
In figures below, all △’s are equal-black-height subtrees

▶ Change colors of some nodes, preserving r-b property 5: all
downward paths have equal b.h.The while loop now continues
with x’s grandparent as the new x
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RB Insert: Case 2
▶ Case 2: “uncle” is black

Node x is a right child

▶ Set x=p[x]. Transform to case 3 via a left-rotation
▶ This preserves property 5: all downward paths contain same

number of black nodes
39 / 62
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RB Insert: Case 3

▶ Case 3: “uncle” is black
Node x is a left child

▶ Perform some color changes and do a right rotation
▶ Again, preserves property 5: all downward paths contain same

number of black nodes
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Red-Black Trees

▶ Red-black trees do what they do very well
▶ What do you think is the worst thing about red-black trees?

A: coding them up
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Recall “Ordinary” BST Delete

▶ Case 1: If vertex to be deleted is a leaf, just delete it
▶ Case 2: If vertex to be deleted has just one child, replace it

with that child
▶ Case 3: If vertex to be deleted has two children, then swap it

with its successor
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Bottom-Up Deletion

▶ Do ordinary BST deletion. Eventually a “case 1” or “case 2”
will be conducted. If deleted node, U, is a leaf, think of
deletion as replacing with the NULL pointer, V. If U had one
child, V, think of deletion as replacing U with V

▶ What can go wrong? If U is red? If U is black?
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Fixing the problem

▶ Think of V as having an “extra” unit of blackness. This extra
blackness must be absorbed into the tree (by a red node), or
propagated up to the root and out of the tree

▶ There are four cases –our examples and “rules” assume that V
is a left child. There are symmetric cases for V as a right child
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Terminology

▶ The node just deleted was U
▶ The node that replaces it is V, which has an extra unit of

blackness
▶ The parent of V is P
▶ The sibling of V is S
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RB Delete: Case 1

▶ Case 1: V’s sibling, S, is red

▶ NOT a terminal case –One of the other cases will now apply
▶ All other cases apply when S is black
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RB Delete: Case 2

▶ Case 2: V’s sibling, S, is black and has two black children

▶ Recolor S to be red
▶ P absorbs V’s extra blackness:

1. If P is red, we’re done
2. If P is black, it now has extra blackness and problem has been

propagated up the tree
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RB Delete: Case 3

▶ Case 3: S is black, S’s right child is red

▶ 1. Rotate S around P
2. Swap colors of S and P, and color S’s right child black

▶ This is the terminal case – we’re done
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RB Delete: Case 4

▶ Case 4: S is black, S’s right child is black and S’s left child is
red

▶ 1. Rotate S’s left child around S
2. Swap color of S and S’s left child before rotation
3. Now in case 3. e.g., V’s sibling is black, which has a red right

child.
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Augmenting Data Structures: Overview

▶ A ”textbook” data structure is enough in some situations
▶ Many others require a dash of creativity and it will suffice to

augment a textbook data structure by storing additional
information in it

▶ The added information must be updated and maintained by
the ordinary operations on the data structure

▶ Then we can program new operations for the data structure
to support the desired application
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Dynamic Order Statistics

▶ We want to augment red-black trees so that they can support
fast order-statistic operations

▶ So introducing an augmenting data structure: order-statistic
tree:
1. Besides the usual red-black tree fields key[x], color[x], p[x],

left[x], and right[x] in a node x, it has additional information:
field size[x]

2. Size[x] is the number of (internal) nodes in the subtree rooted at
x(including x itself)

3. Size[x] = size[left[x]] + size[right[x]] + 1(size[nil [T ]] = 0)
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Order-Statistic Tree - Example

▶ Keys need not to be distinct in an
order-statistic tree

▶ In the presence of equal keys, it is well
defined that the rank of an element is
the position at which it would be
printed in an inorder walk of the tree
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Retrieving an Element with a Given Rank i

OSSelect(x, i) // return the i-th smallest element

1: r← size[left[x]] + 1
2: if i = r then
3: return x
4: else if i < r then
5: return OSSelect(left[x], i)
6: else
7: return OSSelect(right[x], i− r)
▶ The running time of OSSelect is O (log n) for a dynamic

set of n elements

53 / 62



Outline
Binary Search Trees

Red-Black Trees
Augmenting Data Structures

Determining the Rank of an Element x in tree T

OSRank(T, x)
1: r← size[left[x]] + 1
2: y← x
3: while y ̸= root[T ] do
4: if y = right[p[y]] then
5: r← r + size[left[p[y]]] + 1
6: y← p[y]
7: return r
▶ The running time of OSRank is at worst proportional to the

height of the tree: O (log n) on an n-node order-statistic tree
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Maintaining Subtree Sizes

▶ The size field in each node should be efficiently maintained by
the basic modifying operations on red-black trees

▶ Insertion:
1. TreeInsert : we simply increment size[x] for each node x on

the path traversed from the root down toward the leaves.
O (log n)

2. Rotate : each rotation only have the sizefields of two nodes
invalidated. O (1)

▶ How about deletion?
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How to Augment a Data Structure

▶ Augmenting a data structure can be broken into four steps:
1. Choosing an underlying data structure
2. Determining additional information to be maintained in the

underlying data structure
3. Verifying that the additional information can be maintained for

the basic modifying operations on the underlying data structure
4. Developing new operations
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Augmenting a Red-Black Tree

▶ Let f be a field that augments a red-black tree T of n nodes,
and suppose that the contents of f for a node x can be
computed using only the information in nodes x, left[x], and
right[x], including f [left[x]] and f [right[x]]. Then, we can
maintain the values of f in all nodes of T during insertion and
deletion without asymptotically affecting the O (log n)
performance of these operations

▶ Proof?
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Interval Trees: Overview

▶ Represent an interval [t1, t2], as an object i, with fields low[i ]
= t1 (the low endpoint) and high[i ] = t2 (the high endpoint)

▶ Any two intervals i and i ′ satisfy the interval trichotomy, that
is, exactly one of the following three properties holds:
1. i and i ′ overlap
2. i is to the left of i ′
3. i is to the right of i ′

▶ An interval tree is a red-black tree that maintains a dynamic
set of elements, with each element x containing an interval
int[x]

▶ Interval trees support the following operations�
IntervalInsert(T, x), IntervalDelete(T, x),
IntervalSearch(T, i)
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Design of an Interval Tree

▶ Underlying Data Structure:
Choose a red-black tree in which each node x contains an
interval int[x] and the key of x is low[int[x]]

▶ Additional Information
Each node x contains a value max[x], which is the maximum
value of any interval endpoint stored in the subtree rooted at x

▶ Maintaining the Information
max[x] = max(high[int[x]], max[left[x]], max[right[x]])
O (log n)

▶ Developing New Operations
IntervalSearch(T, i)
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Interval Tree - Example
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Interval Search

IntervalSearch(T, i)
//Given interval i, return a node whose interval overlaps i, or it
returns nil [T ] and the tree T contains no node whose interval
overlaps i

1: x← root[T ]
2: while x ̸= nil [T ] and i does not overlap int[x] do
3: if left[x] ̸= nil [T ] and max[left[x]] ≥ low[i] then
4: x← left[x]
5: else
6: x← right[x]
7: return x
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Analysis of Interval Search

▶ Time complexity
1. The search for an interval that overlaps i starts with x at the

root of the tree and proceeds downward
2. Each iteration of the basic loop takes O(1) time. The height of

an n-node red-black tree is O(log n)
3. Thus, the IntervalSearch procedure takes O(log n) time
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