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Mergeable Heap (min-heap by default)

▶ A data structure supports the following operations:
1. MAKE-HEAP(): Create and return a new heap containing no

elements
2. INSERT(H,x): Insert element x
3. MINIMUM(H): Return min element
4. EXTRACT-MIN(H): Return and delete minimum element
5. UNION(H1,H2): Create and return a new heap that contains all

the elements of heaps H1 and H2.
▶ Some other operations: Decrease key of element x to k;

Delete an element.
▶ Applications: Dijkstra’s shortest path algorithm, Prim’s MST

algorithm, Event-driven simulation, Huffman encoding,
Heapsort…
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Mergeable Heap
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Binomial Tree
▶ Recursive definition: B0 is a single node. Bk consists of 2

binomial trees Bk−1 linked together, where the root of one
subtree is the leftmost child of the other.
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Useful Properties

▶ For order k binomial tree Bk
1. Number of nodes = 2k

2. Height = k
3. Degree of root = k
4. Deleting root yields binomial trees

Bk−1, …,B0

5. Bk has
(

k
i

)
nodes at depth i

▶ Proved by induction.
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Useful Properties - Example
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Binomial Heap: Overview
▶ Sequence of binomial trees that satisfy binomial heap

property:
1. Each tree is min-heap ordered
2. 0 or 1 binomial tree of order k can be included.
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Binomial Heap: Implementation

▶ Represent trees using left-child, right sibling pointers.
Three links per node: parent, left (left-most child), right
(right sibling).

▶ Roots of trees connected with singly linked list.
Degrees of trees strictly increasing as we traverse the root list.
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Binomial Heap: Implementation

Figure: A binomial heap H and its more detailed representation. The
heap consists of binmial tree B0,B2 and B3 which have 1,4 and 8 nodes
respectively.
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Binomial Heap: Properties
▶ Properties of N -node binomial heap

1. Min key contained in root of B0, B1, …, Bk
2. Contains binomial tree Bi iff bi = 1 where bn · b2b1b0 is binary

representation of N =
∑⌊log N⌋

i=0 bi2i.
3. At most ⌊log N⌋+ 1 binomial trees.
4. Height ≤ ⌊log N⌋

Xiang-Yang Li and Haisheng Tan Advanced Data Structures II 11 / 83



Outline
Binomial Heaps

Fibonacci Heaps
Data Structures for Disjoint Sets

Binomial Heap: Union
▶ Create H that is union of heaps H ′ and H ′′ (in O(1) time):

1. “Mergeable heaps”
2. Easy if H ′ and H ′′ are each an order k binomial tree.

a. connect roots of H ′ and H ′′

b. choose smaller key to be root of H
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Binomial Heap: Union
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Binomial Heap: Union
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Analysis of Union

▶ Create heap H that is union of heaps H’ and H”
Analogous to binary addition.

▶ Running time: O (log N)
Proportional to number of trees in root lists
⌊log N′⌋+ 1 + ⌊log N′′⌋+ 1≤ 2 (⌊log N⌋+ 1)
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Binomial Heap: Delete Min

▶ Delete node with minimum key in binomial heap H:
1. Find root x with min key in root list of H, and delete
2. H ′ ← broken binomial trees
3. H← Union(H ′,H)

▶ Running time: O (log N)
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Binomial Heap: Delete Min
▶ Delete node with minimum key in binomial heap H:

1. Find root x with min key in root list of H, and delete
2. H ′ ← broken binomial trees
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Binomial Heap: Decrease Key

▶ Decrease key of node x in binomial heap H:
1. Suppose x is in binomial tree Bk
2. Bubble node x up the tree if x is too small

▶ Running time: O (log N)
Proportional to depth of node x ≤ ⌊log2 N⌋
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Binomial Heap: Delete

▶ Delete node x in binomial heap H:
1. Decrease key of x to −∞
2. DeleteMin

▶ Running time: O (log N)
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Binomial Heap: Insert

▶ Insert a new node x into binomial heap H
1. H ′ ←MakeHeap(x)
2. H← Union(H ′,H)

▶ Running time: O (log N)
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Recall
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Fibonacci Heaps: Overview

▶ Fibonacci heap history: Fredman and Tarjan (1986)
1. Ingenious data structure and analysis
2. Original motivation: O (m + n log n) shortest path algorithm,

also led to faster algorithms for MST, weighted bipartite
matching

3. Still ahead of its time
▶ Fibonacci heap intuition:

1. Similar to binomial heaps, but less structured
2. Decrease-key and union run in O (1) time (amortized)
3. “Lazy” unions

▶ Fibonacci heaps are named after the Fibonacci numbers,
which are used in their running time analysis.
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Fibonacci Heaps: Structure

▶ Fibonacci heap:
Set of min-heap ordered trees
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Fibonacci Heaps: Implementation
▶ Each node contains a pointer to its parent and a pointer to

any one of its children. The children are linked together in a
circular, doubly linked list:
Can quickly splice off subtrees

▶ Roots of trees connected with circular doubly linked list:
Fast union

▶ Pointer to root of tree with min element:
Fast find-min
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Fibonacci Heaps: Potential Function
▶ Degree[x] = degree of node x
▶ D(n) = max degree of any node in Fibonacci heap with n

nodes
▶ Mark[x] = mark of node x (black or gray)
▶ t(H) = # trees
▶ m(H) = # marked nodes
▶ Φ(H) = t(H) + 2m(H) = potential function
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Fibonacci Heaps: Insert

▶ Insert:
1. Create a new singleton tree
2. Add to left of min pointer
3. Update min pointer

▶ Running time: O (1) amortized
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Fibonacci Heaps: Union

▶ Union:
1. Concatenate two Fibonacci heaps
2. Root lists are circular, doubly linked lists
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Fibonacci Heaps: Union

▶ Union:
1. Concatenate two Fibonacci heaps
2. Root lists are circular, doubly linked lists

▶ Concatenate the two root lists, and update the min pointer.
▶ Running time: O (1) amortized
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Fibonacci Heaps: Delete Min

▶ Delete min and concatenate its children into root list
▶ Consolidate trees so that no two roots have same degree
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Fibonacci Heaps: Delete Min Analysis

▶ Actual cost: O (D(n) + t(H ))

1. O (D(n)) work adding min’s children into root list and updating
min

2. O (D(n) + t(H )) work consolidating trees
▶ Amortized cost: O (D(n))

1. t(H ′) ≤ D(n) + 1 since no two trees have same degree
2. ∆Φ(H ) ≤ D(n) + 1− t(H )
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Fibonacci Heaps: Delete Min Analysis

▶ Is amortized cost of O (D(n)) good?
1. Yes, if only Insert, Delete-min, and Union operations supported

a. In this case, Fibonacci heap contains only binomial trees since we
only merge trees of equal root degree

b. This implies D(n) ≤ ⌊log2 N⌋
2. Yes, if we support Decrease-key in clever way

a. We’ll show that D(n) ≤ ⌊logϕ N⌋ where ϕ is golden ratio
b. Limiting ratio between successive Fibonacci numbers!
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Fibonacci Heaps: Decrease Key

▶ Case 0: min-heap property not violated
1. Decrease key of x to k
2. Change heap min pointer if necessary
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Fibonacci Heaps: Decrease Key

▶ Case 1: min-heap property violated; and parent of x is
unmarked
1. Decrease key of x to k
2. Cut off link between x and its parent
3. Mark parent
4. Add tree rooted at x to root list, updating heap min pointer
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Fibonacci Heaps: Decrease Key
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Fibonacci Heaps: Decrease Key

▶ Case 2:min-heap property violated; and parent of x is marked
1. Decrease key of x to k
2. Cut off link between x and its parent p[x], and add x to root list
3. Cut off link between p[x] and p[p[x]], add p[x] to root list

a. If p[p[x]] unmarked, then mark it
b. If p[p[x]] marked, cut off p[p[x]], unmark, and repeat
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Fibonacci Heaps: Decrease Key

▶ Case 2:min-heap property violated; and parent of x is marked
1. Decrease key of x to k
2. Cut off link between x and its parent p[x], and add x to root list
3. Cut off link between p[x] and p[p[x]], add p[x] to root list

a. If p[p[x]] unmarked, then mark it
b. If p[p[x]] marked, cut off p[p[x]], unmark, and repeat
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Fibonacci Heaps: Decrease Key

▶ Case 2:min-heap property violated; and parent of x is marked
1. Decrease key of x to k
2. Cut off link between x and its parent p[x], and add x to root list
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Fibonacci Heaps: Decrease Key

▶ Case 2:min-heap property violated; and parent of x is marked
1. Decrease key of x to k
2. Cut off link between x and its parent p[x], and add x to root list
3. Cut off link between p[x] and p[p[x]], add p[x] to root list

a. If p[p[x]] unmarked, then mark it
b. If p[p[x]] marked, cut off p[p[x]], unmark, and repeat

Xiang-Yang Li and Haisheng Tan Advanced Data Structures II 62 / 83



Outline
Binomial Heaps

Fibonacci Heaps
Data Structures for Disjoint Sets

Fibonacci Heaps: Decrease Key

▶ Case 2: parent of x is marked
1. Decrease key of x to k
2. Cut off link between x and its parent p[x], and add x to root list
3. Cut off link between p[x] and p[p[x]], add p[x] to root list

a. If p[p[x]] unmarked, then mark it
b. If p[p[x]] marked, cut off p[p[x]], unmark, and repeat
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Fibonacci Heaps: Decrease Key Analysis

▶ Actual cost: O (c)
1. O (1) time for decrease key
2. O (1) time for each of c cascading cuts, plus reinserting in root

list
▶ Amortized cost: O (1)

1. t(H ′) = t(H ) + c
2. m(H ′) ≤ m(H )− c + 2
3. ∆Φ(H ) ≤ c + 2(−c + 2) = 4− c
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Fibonacci Heaps: Delete

▶ Delete node x :
1. Decrease key of x to −∞
2. Delete min element in heap

▶ Amortized cost: O (D(n))
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Fibonacci Heaps: Bounding Max Degree

▶ Key lemma: In a Fibonacci heap with N nodes, the
maximum degree of any node, denoted as D(N), is at most
logϕ N, where ϕ = (1+

√
5)

2 .
▶ Corollary: Delete and Delete-min take O (log N) amortized

time
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Fibonacci Facts

▶ Definition: The Fibonacci sequence is

Fk =


0 if k = 0
1 if k = 1
Fk−1 + Fk−2 if k ≥ 2

▶ Fact 1: Fk+2 ≥ ϕk

Proved by induction, and ϕ2 = ϕ+ 1.
▶ Fact 2: For k ≥ 0, Fk+2 = 1 +

∑k
i=0 Fi = 2 +

∑k
i=2 Fi
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Proof of Key Lemma
▶ Lemma: Let x be a node with degree k, and let y1, …, yk

denote the children of x in the order in which they were linked
to x. Then:

degree(yi) ≥

{
0 if i = 1
i− 2 if i ≥ 2

▶ Proof:
1. When yi is linked to x, y1, . . . , yi−1 already linked to x,
⇒ degree(x) = i− 1
⇒ degree(yi) = i− 1 since we only link nodes of equal degree (in
CONSOLIDATE)

2. Since then, yi has lost at most one child (or else,
CASCADING-CUT will be triggered)

3. Thus, degree(yi) = i− 1 or i− 2
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Proof of Key Lemma

▶ Proof of Key Lemma::
1. For any node x, we show that size(x) ≥ ϕdegree(x)

a. size(x) = # node in subtree rooted at x
b. Taking base ϕ logs, degree(x) ≤ logϕ(size(x)) ≤ logϕ N

2. Let sk be min size of tree rooted at any degree k node
a. Trivial to see that s0 = 1, s1 = 2
b. sk monotonically increases with k

3. Let z be a degree k node and size(z)=sk, and let y1, . . . , yk be
children in order that they were linked to z
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Proof of Key Lemma

▶ Proof of Key Lemma: :
4. Since yi.degree ≥ i− 2 for i ≥ 2, we have

size(x) ≥ sk ≥ 2 +
k∑

i=2
syi.degree

≥ 2 +
k∑

i=2
si−2 (since yi.degree ≥ i− 2)

≥ 2 +
k∑

i=2
Fi (prove sk ≥ Fk+2byinduction)

= Fk+2 ≥ ϕk.
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Data Structures for Disjoint Sets: Overview

▶ Some applications involve grouping n distinct elements into a
collection of disjoint sets

▶ Two important operations are then finding which set a given
element belongs to and uniting two sets

▶ This chapter explores methods for maintaining a data
structure that supports these operations

▶ Application: connected components in an undirected graph,
data clustering...
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Disjoint-Set Operations

▶ Letting x denote an object, we wish to support the following
operations:
1. MakeSet(x) creates a new set whose only member is x. We

require that x not already be in some other set
2. Union(x, y) unites the dynamic sets that contain x and y, say Sx

and Sy, into a new set that is the union of these two sets, then
we remove sets Sx and Sy from S

3. FindSet(x) returns a pointer to the representative of the
(unique) set containing x
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Running Time Analysis

▶ The running times of disjoint-set data structures shall be
analyzed in terms of two parameters:
1. n: the number of MakeSet operations
2. m: the total number of MakeSet, Union, and FindSet

operations
▶ The number of Union operations is at most n− 1
▶ We have m ≥ n
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Linked-List Representation

▶ A simple way to implement a disjoint-set data structure is to
represent each set by a linked list

▶ The first object in each linked list serves as its set’s
representative

▶ Each object in the linked list contains a set member, a pointer
to the object containing the next set member, and a pointer
back to the representative

▶ Each list maintains pointers head, to the representative, and
tail, to the last object in the list
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Linked-List - Example

▶ The result of Union(g, e), which appends the linked list
containing e to the linked list containing g. The representative
of the resulting set is f. The set object for e’s list, S2, is
destroyed
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Running Time Analysis

▶ Both MakeSet and FindSet only require O (1) time
▶ The worst case: suppose there are objects x1, x2, ..., xn, we

first execute n MakeSet operations, then n− 1 Union
operations: Union(x2, x1),...,Union(xn, xn−1)
1. The n MakeSet operations takes Θ(n) time
2. Because the i th Union operation updates i objects, the total

number of objects updated by all n− 1 UNION operations is

n−1∑
i=1

i = Θ(n2)

3. The amortized time of an operation is Θ(n)

Xiang-Yang Li and Haisheng Tan Advanced Data Structures II 76 / 83



Outline
Binomial Heaps

Fibonacci Heaps
Data Structures for Disjoint Sets

Smaller into Larger

▶ A weighted-union heuristic: suppose that each list also
includes the length of the list and that we always append the
shorter list onto the longer, breaking ties arbitrarily

▶ Theorem: Using the linked-list representation of disjoint sets
and the weighted-union heuristic, a sequence of m MakeSet,
Union, and FindSet operations, n of which are MakeSet
operations, takes O (m + n log n) time

▶ Proof?

For any k ≤ n, after an object x′s pointer has been updated
⌈log k⌉ times, the resulting set must have at least k members.
So, each element will at most be updated ⌈log n⌉ times in
UNION operations.
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Disjoint-Set Forests
▶ In a faster implementation of disjoint sets, we represent sets

by rooted trees, with each node containing one member and
each tree representing one set

▶ The straightforward algorithms that use this representation
are no faster than ones that use the linked-list representation
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Representing Sets as Trees

▶ MakeSet: create a tree with just one node
▶ FindSet:follow parent pointers until we find the root of the

tree. The nodes visited on this simple path toward the root
constitute the find path

▶ Union: cause the root of one tree to point to the root of the
other
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Heuristics to Improve the Running Time

▶ Union by rank: for each node, we maintain a rank, which is
an upper bound on the height of the node. In union by rank,
we make the root with smaller rank point to the root with
larger rank during a Union operation

▶ Path compression: we use it during FindSet operations to
make each node on the find path point directly to the root.
Path compression does not change any ranks
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Disjoint-Set Forests - Pseudocode I

MakeSet(x)
1: p[x]← x
2: rank[x]← 0

Union(x, y)
1: Link(FindSet(x), FindSet(y))
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Disjoint-Set Forests - Pseudocode II

Link(x, y)

1: if rank[x] > rank[y] then
2: p[y]← x
3: else
4: p[x]← y
5: if rank[x] = rank[y] then
6: rank[y]← rank[y] + 1
7: end if
8: end if

FindSet(x)

1: if x ̸= p[x] then
2: p[x]← FindSet(p[x])
3: end if
4: return p[x]
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Running Time Analysis

▶ Theorem: In general, amortized cost is O (α(n)), where α(n)
grows really, really, really slow
proof: Really, really, really long

▶ In any conceivable application of a disjoint-set data structure,
α(n) ≤ 4

Xiang-Yang Li and Haisheng Tan Advanced Data Structures II 83 / 83


	Outline
	Binomial Heaps
	Fibonacci Heaps
	Data Structures for Disjoint Sets

