
Aggregate Analysis
Accounting Method

Potential Method

Introduction to Algorithms
Topic 6-3 : Amortized Analysis

Xiang-Yang Li and Haisheng Tan

School of Computer Science and Technology
University of Science and Technology of China (USTC)

Fall Semester 2024

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 1 / 32

Aggregate Analysis
Accounting Method

Potential Method

Outline

Aggregate Analysis

Accounting Method

Potential Method

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 2 / 32

Aggregate Analysis
Accounting Method

Potential Method

Overview

Amortized analysis is a cost analysis technique,which
computes the average cost required to perform a sequence of n
operations on a data structure .
▶ Background: Show that although some individual

operations may be expensive, on average the cost per
operation is small. Often the worst case analysis is not
tight.

▶ Goal: The amortized cost of an operation is less than its
worst case, so that average cost in the worst case for a
sequence of n operations is more tighter.
Here, this average cost is not based on averaging over a

distribution of inputs. Here, no probability is involved.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 3 / 32

Aggregate Analysis
Accounting Method

Potential Method

Three Methods

▶ Aggregate analysis: in the worst case, the total amount of
time needed for the n operations is computed and divided
by n.

▶ Accounting: different operations are assigned different
charges. Some operations charged more or less than their
actual cost.

▶ Potential: the prepaid work is represented as “potential”
energy that can be released to pay for future operations.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 4 / 32

Aggregate Analysis
Accounting Method

Potential Method

Basic idea
Stack example
Binary counter example

Contents

Aggregate Analysis
Basic idea
Stack example
Binary counter example

Accounting Method

Potential Method

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 5 / 32

Aggregate Analysis
Accounting Method

Potential Method

Basic idea
Stack example
Binary counter example

Basic idea of Aggregate Analysis

▶ Assume that n operations together take worst-case time
T(n).

▶ The amortized cost (or average cost) of an operation is
T(n)/n.

▶ Remark:
▶ Amortized cost is the same for any operations,even for

several types of operations.
▶ Amortized cost may be more or less than the actual cost for

an operation.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 6 / 32

Aggregate Analysis
Accounting Method

Potential Method

Basic idea
Stack example
Binary counter example

Stack example

We have learned two fundamental stack operations, each of
which takes O(1) time.
▶ PUSH(S,x): pushes object x onto stack S.
▶ POP(S): pops the top of stack S and returns the popped

object.
Considering the cost of each operation above to be 1, the

total cost of a sequence of n PUSH and POP operations is
therefore n,and the actual running time for n operations is
therefore θ(n).

A new stack operation MULTIPOP(S,k),it removes the k
top objects of stack S, or pops the entire stack if it contains
fewer than k objects.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 7 / 32

Aggregate Analysis
Accounting Method

Potential Method

Basic idea
Stack example
Binary counter example

Stack example

The pseudocode of MULTIPOP(S,k) is as follows. In the
pseudocode, the operation STACK -EMPTY returns TRUE if
there are no objects currently on the stack, and FALSE
otherwise.

MULTIPOP(S,k)
1: while not STACK -EMPTY(S) and k ̸= 0 do
2: POP(S)
3: k = k−1

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 8 / 32

Aggregate Analysis
Accounting Method

Potential Method

Basic idea
Stack example
Binary counter example

Stack example

Figure: The action of MULTIPOP on a stack S, shown initially in (a).
The top 4 objects are popped by MULTIPOP(S,4), whose result is
shown in (b). The next operation is MULTIPOP(S,7),which empties
the stack—shown in (c)—since there were fewer than 7 objects
remaining.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 9 / 32

Aggregate Analysis
Accounting Method

Potential Method

Basic idea
Stack example
Binary counter example

Stack example

Time complexity
The actual running time is linear in the number of POP

operations actually executed.
The number of iterations of the while loop is the number of

objects popped off the stack (i.e. min(S,k)).
Thus, the total cost of MULTIPOP is min(S,k),and the

actual running time is a linear function of this cost.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 10 / 32

Aggregate Analysis
Accounting Method

Potential Method

Basic idea
Stack example
Binary counter example

Stack example

Aggregate Analysis of Stack Operation
Given a sequence of n PUSH, POP, and MULTIPOP

operations on an initially empty stack.
Each MULTIPOP operation costs O(n) and we may have

O(n) such operations, hence a sequence of n operations costs
O(n2).

Although this analysis is correct, the O(n2) result is not
tight.

Using aggregate analysis, we can obtain a better upper
bound that considers the entire sequence of n operations.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 11 / 32

Aggregate Analysis
Accounting Method

Potential Method

Basic idea
Stack example
Binary counter example

Stack example

Amortized Cost of Stack Operations
▶ Each object can be popped at most once for each time it is

pushed.
▶ So the number of times that POP and MULTIPOP can be

called is at most the number of PUSH operations, which is
at most n.

▶ Thus, for any value of n, any sequence of n PUSH, POP,
and MULTIPOP operations takes a total of O(n) time,
then the average cost of an operation is O(n)/n = O(1).

▶ In aggregate analysis, we assign the amortized cost of each
operation to be the average cost. In this example, therefore,
all three stack operations have an amortized cost of O(1).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 12 / 32

Aggregate Analysis
Accounting Method

Potential Method

Basic idea
Stack example
Binary counter example

Binary counter example

▶ The problem of implementing a
k-bit binary counter that counts
upward from 0 is another
example of aggregate analysis.

▶ The counter is an array
A[0, ..,k−1] of bits, where
A.length = k.

▶ A binary number x is stored in
the counter. A[0] is the
lowest-order bit and A[k−1] is its
highest-order bit, so that
x = ∑k−1

i=0 A[i] ·2i

▶ Initially,x = 0, and thus A[i] = 0
for i = 0,1, ..,k−1.

To add 1 (modulo 2k) to
the value in the counter,
we use the following
procedure.

INCREMENT(A)
1: i = 0
2: while i<A.length and

A[i] == 1 do
3: A[i] = 0
4: i = i+1
5: if i < A.length then
6: A[i] = 1

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 13 / 32

Aggregate Analysis
Accounting Method

Potential Method

Basic idea
Stack example
Binary counter example

Binary counter example

▶ The problem of implementing a
k-bit binary counter that counts
upward from 0 is another
example of aggregate analysis.

▶ The counter is an array
A[0, ..,k−1] of bits, where
A.length = k.

▶ A binary number x is stored in
the counter. A[0] is the
lowest-order bit and A[k−1] is its
highest-order bit, so that
x = ∑k−1

i=0 A[i] ·2i

▶ Initially,x = 0, and thus A[i] = 0
for i = 0,1, ..,k−1.

To add 1 (modulo 2k) to
the value in the counter,
we use the following
procedure.

INCREMENT(A)
1: i = 0
2: while i<A.length and

A[i] == 1 do
3: A[i] = 0
4: i = i+1
5: if i < A.length then
6: A[i] = 1

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 13 / 32

Aggregate Analysis
Accounting Method

Potential Method

Basic idea
Stack example
Binary counter example

Binary counter example
The following figure shows what happens to an 8−bit

binary counter as it is incremented 16 times,starting with the
initial value 0 and ending with the value 16. Bits that flip to
achieve the next value are shaded. (Note: Setting a bit is 0 → 1;
Resetting a bit is 1 → 0.)

Counter A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0] Totalvalue cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
6 0 0 0 0 0 1 1 0 10
7 0 0 0 0 0 1 1 1 11
8 0 0 0 0 1 0 0 0 15
9 0 0 0 0 1 0 0 1 16

10 0 0 0 0 1 0 1 0 18
11 0 0 0 0 1 0 1 1 19
12 0 0 0 0 1 1 0 0 22
13 0 0 0 0 1 1 0 1 23
14 0 0 0 0 1 1 1 0 25
15 0 0 0 0 1 1 1 1 26
16 0 0 0 1 0 0 0 0 31
Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 14 / 32

Aggregate Analysis
Accounting Method

Potential Method

Basic idea
Stack example
Binary counter example

Binary counter example

Time Complexity
▶ A single execution of INCREMENT takes time θ(k) in the

worst case.
▶ Thus, a sequence of n INCREMENT operations on an

initially zero counter takes time O(nk) in the worst case.
▶ This cursory analysis yields a bound that is correct but not

tight.We can tighten it as follows:
We observe that not all bits flip each time INCREMENT is
called. In general, bit A[i] flips ⌊n/2i⌋ times in a sequence
of n INCREMENT operations on an initially zero counter,
for i = 0,1, ..,⌈lgn⌉. For i > ⌈lgn⌉, bit A[i] never flips at all.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 15 / 32

Aggregate Analysis
Accounting Method

Potential Method

Basic idea
Stack example
Binary counter example

Binary counter example

Time Complexity
▶ Thus, the total number of flips in the sequence is:

⌈lgn⌉
∑

i=0

⌊ n
2i

⌋
< n

∞
∑

i=0
1
2i

= 2n
▶ Therefore, the worst-case time for a sequence of n

INCREMENT operations on an initially zero counter is
O(n).The average cost of each operation, i.e. the amortized
cost per operation, is O(n)/n = O(1).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 16 / 32

Aggregate Analysis
Accounting Method

Potential Method

Basic idea
Stack example
Binary counter example

Contents

Aggregate Analysis

Accounting Method
Basic idea
Stack example
Binary counter example

Potential Method

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 17 / 32

Aggregate Analysis
Accounting Method

Potential Method

Basic idea
Stack example
Binary counter example

Basic idea

The Accounting Method
▶ Accounting method: It is a method of amortized analysis

and it assigns differing charges to different operations.The
amount we charge an operation is called its amortized cost.

▶ When an operation’s amortized cost exceeds its actual cost,
the difference is called credit.

▶ Credit can be used later on to help pay for operations
whose amortized cost is less than their actual cost.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 18 / 32

Aggregate Analysis
Accounting Method

Potential Method

Basic idea
Stack example
Binary counter example

Basic idea

The Accounting Method
▶ We must choose the amortized costs of operations carefully

to make that:

∑n
i=1 ĉi ≥ ∑n

i=1 ci
for all sequences of n operations,wherein ci is the actual
cost of the i th operation,ĉi is the amortized cost of the i th
operation.

▶ By doing so, we guarantee that the total amortized cost of
a sequence of operations must be an upper bound on the
total actual cost of the sequence. Thus, we must take care
that the total credit in the data structure never becomes
negative.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 19 / 32

Aggregate Analysis
Accounting Method

Potential Method

Basic idea
Stack example
Binary counter example

Stack example
Let us assign the following amortized costs:

Operation Actual Cost Amortized Cost
push 1 2
pop 1 0

multipop min(n,k) 0
When pushing an item, pay $2:
▶ $1 pays for the push.
▶ $1 is prepayment for it being popped by either pop or

multipop.
▶ Since each item on the stack has $1 credit, the credit can

never go negative.
▶ Due to at most n pushes, the total amortized cost in the

worst case is: 2n ∈ O(n).
▶ It is an upper bound on total actual cost.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 20 / 32

Aggregate Analysis
Accounting Method

Potential Method

Basic idea
Stack example
Binary counter example

Binary counter example

Charge $2 to set a bit to 1
▶ $1 pays for setting a bit to 1.
▶ $1 is prepayment for flipping it back to 0.
▶ Have $1 of credit for every 1 in the counter.
▶ Therefore, credit≥ 0.

Amortized cost of Increment
▶ Cost of resetting bits to 0 is paid by credit.
▶ At most 1 bit is set to 1 in each increment operation.
▶ Therefore, amortized cost ≤ $2 for each increment.
▶ For n operations, the total amortized cost in the worst case

is 2n ∈ O(n). So, amortized cost for an op is O(1).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 21 / 32

Aggregate Analysis
Accounting Method

Potential Method

Basic idea
Stack example
Binary counter example

Contents

Aggregate Analysis

Accounting Method

Potential Method
Basic idea
Stack example
Binary counter example

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 22 / 32

Aggregate Analysis
Accounting Method

Potential Method

Basic idea
Stack example
Binary counter example

Basic idea

Idea: like the accounting method, but think of the credit as
potential stored with the entire data structure.
▶ Accounting method stores credit with specific items.
▶ Potential method can release potential to pay for future

operations.
It is the most flexible among the amortized analysis methods.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 23 / 32

Aggregate Analysis
Accounting Method

Potential Method

Basic idea
Stack example
Binary counter example

Basic idea

Framework
▶ Start with an initial data structure D0.
▶ Operation i transforms Di−1 to Di .
▶ The cost of operation i is ci.
▶ Define a potential function Φ:{ Di} → R,such that

Φ(D0) = 0 and Φ(Di)≥ 0 for all i.
▶ The amortized cost ĉi with respect to Φ is defined to be:

ĉi = ci +Φ(Di)−Φ(Di−1)

and Φ(Di)−Φ(Di−1) is called potential difference ∆Φi

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 24 / 32

Aggregate Analysis
Accounting Method

Potential Method

Basic idea
Stack example
Binary counter example

Basic idea

Framework(cont)
▶ Thus the total amortized cost of the n operations is:

∑n
i=1 ĉi = ∑n

i=1(ci +Φ(Di)−Φ(Di−1))
= ∑n

i=1 ci +Φ(Dn)−Φ(D0)

▶ If existing a potential function Φ so that
Φ(Dn)≥ Φ(D0),then the total amortized cost ∑n

i=1 ĉi is an
upper bound on the total actual cost ∑n

i=1 ci.
▶ We can define Φ(D0) to be 0 and then to show that

Φ(Di)≥ 0 for all i.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 25 / 32

Aggregate Analysis
Accounting Method

Potential Method

Basic idea
Stack example
Binary counter example

Basic idea

Framework(cont)
▶ If Φ(Di)−Φ(Di−1) is positive, the amortized cost ĉi

represents an overcharge to the i th operation; otherwise, it
represents an undercharge to the i th operation and the
actual cost of the operation is paid by the decrease in the
potential.

▶ Different potential functions may yield different amortized
costs yet still be upper bounds on the actual costs.

▶ There are often trade-offs that can be made in choosing a
potential function; the best potential function to use
depends on the desired time bounds.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 26 / 32

Aggregate Analysis
Accounting Method

Potential Method

Basic idea
Stack example
Binary counter example

Stack example

Stack operations
▶ The potential function Φ on a stack is defined to be the

number of objects in the stack.
▶ For the initial empty stack D0 , we have Φ(D0) = 0.
▶ Then we have Φ(Di)≥ 0 = Φ(D0).
▶ Therefore the total amortized cost of n operations with

respect to Φ represents an upper bound on the actual cost.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 27 / 32

Aggregate Analysis
Accounting Method

Potential Method

Basic idea
Stack example
Binary counter example

Stack example
Now compute the amortized costs of the various stack
operations
▶ If the i th operation on a stack containing s objects is a

PUSH operation,then the potential difference is:
Φ(Di)−Φ(Di−1) = (s+1)− s = 1

So the amortized cost of this PUSH operation is:
ĉi = ci +Φ(Di)−Φ(Di−1) = 1+1 = 2

▶ Suppose that the i th operation on the stack is
MULTIPOP(S,k) and that k′ = min(k,s) objects are
popped off the stack. The actual cost of the operation is k′,
and the potential difference is:

Φ(Di)−Φ(Di−1) =−k′

Thus the amortized cost of the MULTIPOP operation is:
ĉi = ci +Φ(Di)−Φ(Di−1) = k′−k′ = 0

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 28 / 32

Aggregate Analysis
Accounting Method

Potential Method

Basic idea
Stack example
Binary counter example

Stack example

▶ Similarly, the amortized cost of an ordinary POP operation
is 0.

▶ The amortized cost of each of the three operations is O(1),
and thus the total amortized cost of a sequence of n
operations is O(n).

▶ Since Φ(Di)≥ Φ(D0), the total amortized cost of n
operations is an upper bound on the total actual cost.

▶ Therefore the worst-case cost of n operations is O(n).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 29 / 32

Aggregate Analysis
Accounting Method

Potential Method

Basic idea
Stack example
Binary counter example

Binary counter example

Incrementing a binary counter
Let bi denote the potential of the counter after the i th

INCREMENT operation, it is the number of 1’s in the counter
after the i th operation.

Now compute the amortized cost of an INCREMENT
operation.
▶ Suppose that the i th INCREMENT operation resets ti

bits,the actual cost of the operation is therefore at most
ti +1 (besides resetting ti bits, we might set one more bit
to 1)

▶ If bi = 0, that is the i th operation resets all k bits (k is the
number of bits in the counter), then bi−1 = ti = k; If bi > 0,
then bi = bi−1 − ti +1.

▶ In either case, bi ≤ bi−1 − ti +1.
Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 30 / 32

Aggregate Analysis
Accounting Method

Potential Method

Basic idea
Stack example
Binary counter example

Binary counter example

▶ So the potential difference is:
Φ(Di)−Φ(Di−1)≤ (bi−1 − ti +1)−bi−1 = 1− ti

▶ Therefore the amortized cost is:
ĉi = ci +Φ(Di)−Φ(Di−1)

≤ (ti +1)+(1− ti) = 2
▶ If the counter starts at zero, then Φ(D0) = 0.
▶ Since Φ(Di)≥ 0 for all i, the total amortized cost of a

sequence of n INCREMENT operations is an upper bound
on the total actual cost.

▶ So the worst-case cost of n INCREMENT operations is
O(n).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 31 / 32

Aggregate Analysis
Accounting Method

Potential Method

Basic idea
Stack example
Binary counter example

Binary counter example
▶ When it does not start at zero, there are initially b0 1’s.

After n INCREMENT operations there are bn 1’s, where
0 ≤ b0, bn ≤ k (k is the number of bits in the counter).

▶ So we have:
∑n

i=1 ci = ∑n
i=1 ĉi −Φ(Dn)+Φ(D0)

▶ Because we have ĉi ≤ 2 for all 1 ≤ i ≤ n; Φ(D0) = b0 and
Φ(Dn) = bn, the total actual cost of n INCREMENT
operations is:

∑n
i=1 ci ≤ ∑n

i=1 2−bn +b0
= 2n−bn +b0

▶ Since b0 ≤ k, as long as k = O(n), the total actual cost is
O(n).

▶ Thus, if we execute at least n = Ω(k) INCREMENT
operations,the total actual cost is O(n), no matter what
initial value the counter contains.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 32 / 32

	Aggregate Analysis
	Basic idea
	Stack example
	Binary counter example

	Accounting Method
	Basic idea
	Stack example
	Binary counter example

	Potential Method
	Basic idea
	Stack example
	Binary counter example

