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Overview

In divide and conquer approach, a problem is divided into
smaller problems, then the smaller problems are solved
independently, and finally the solutions of smaller problems are
combined into a solution for the large problem.

Generally, divide-and-conquer algorithms have three parts:
▶ Divide: Divide the problem into a number of sub-problems

that are smaller instances of the same problem.
▶ Conquer: Conquer the sub-problems by solving them

recursively. If they are small enough, solve the
sub-problems as base cases.

▶ Combine: Combine the solutions to the sub-problems into
the solution for the original problem.
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Pros and cons

Divide and conquer approach supports parallelism as
sub-problems are independent. Hence, an algorithm, which is
designed using this technique, can run on the multiprocessor
system or in different machines simultaneously.

In this approach, most of the algorithms are designed using
recursion, hence memory management is very high. For
recursive function stack is used, where function state needs to
be stored.
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Problem Description

▶ Input: two n−bit integers X and Y.
▶ Output: product of X and Y.
▶ Example: X = 1980 Y = 2315

1980
× 2315

9900
1980

5940
+ 3960
= 4573700

This is the algorithm you learned in grade school. Notice it
takes O(n2) time.
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Solution

Divide and Conquer

X =
a b

Y =
c d

X = a ·2n/2 +b Y = c ·2n/2 +d
XY = ac ·2n +(ad+bc) ·2n/2 +bd
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Being Clever

Time Complexity

T(n) =
{

O(1) n = 1
4T(n/2)+O(n) n > 1

whose solution we claimed to be T(n) = O(n2). Compared
to the original method, this method has not been significantly
improved.In order to reduce the time complexity, we must
reduce the number of multiplications.

XY = ac ·2n +(ad+bc) ·2n/2 +bd (1)
XY = ac ·2n − ((a−b)(c−d)−ac−bd) ·2n/2 +bd (2)
XY = ac ·2n +((a+b)(c+d)−ac−bd) ·2n/2 +bd (3)
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Analysis
The complexity of the last two XY multiplication schemes

is O(nlog3), but considering a+ c,b+d may get the result of
n+1 bit, which makes the size of the problem bigger, so it does
not choose the third option.

T(n) =
{

O(1) n = 1
3T(n/2)+O(n) n > 1

Thus, T(n) = O(nlog3) = O(n1.59)
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Being Clever

▶ Is there a faster way?
▶ If you divide a large integer into more segments, combine

them in a more complicated way,it will be possible to get a
better algorithm.

▶ In the end, this idea led to the fast Fourier transform. This
method can also be seen as a complex divide calculation
method, for large integer multiplication, it can be solved in
O(nlogn) time.
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Problem Description

Let us consider two matrices A and B. We want to
calculate the resultant matrix C by multiplying A and B.

Naive Method
If A = (aij) and B = (bij) are square n×n matrices, then in

the product C = A ·B, we define the entry cij , for i, j = 1,2, ...,n,
by
cij = ∑n

k=1 aik ·bkj. We must compute n2 matrix entries, and
each is the sum of n values.
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Naive Method

Square-Matrix-Multiply(A,B)
1: n = A.rows
2: let C be a new n×n matrix
3: for i = 1 to n do
4: for j = 1 to n do
5: cij = 0
6: for k = 1 to n do
7: cij = cij +aik ·bkj

8: return C

Complexity
Here, we assume that integer operations take O(1) time. There
are three for loops in this algorithm and one is nested in other.
Hence, the algorithm takes O(n3) time to execute
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Simple Divide and Conquer
Following is simple Divide and Conquer method to

multiply two square matrices.
▶ Divide matrices A and B in 4 sub-matrices of size

N/2×N/2 as shown in the below diagram.
▶ Calculate following values recursively.(

A1 A2
A3 A4

)
×

(
B1 B2
B3 B4

)
=(

A1B1 +A2B3 A1B2 +A2B4
A3B1 +A4B3 A3B2 +A4B4

)
In the above method, we do 8 multiplications for matrices

of size N/2×N/2 and 4 additions. Addition of two matrices
takes O(n2) time. So the time complexity is
T(n) = 8T(n/2)+O(n2). From Master’s Theorem, time
complexity of above method is O(n3) which is unfortunately
same as the above naive method.

Simple Divide and Conquer also leads to O(n3), can there
be a better way?

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 14 / 47



Large Number Multiplication
Strassen’s Algorithm for Matrix Multiplication

Defective Chessboard
Polynomials and the FFT

Problem Description
Solution

Strassen’s Matrix Multiplication

In the above divide and conquer method, the main
component for high time complexity is 8 recursive calls. The
idea of Strassen’s method is to reduce the number of recursive
calls to 7.

Strassen’s method is similar to above simple divide and
conquer method in the sense that this method also divide
matrices to sub-matrices of size N/2×N/2 as shown in the
above slide, but in Strassen’s method, the four sub-matrices of
result are calculated using following formula.
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Strassen’s Matrix Multiplication
The Strassen algorithm defines instead new matrices:
M1 = (A1 +A4)(B1 +B4) M2 = (A3 +A4)B1

M3 = A1(B2 −B4) M4 = A4(B3 −B1)

M5 = (A1 +A2)B4 M6 = (A3 −A1)(B1 +B2)

M7 = (A2 −A4)(B3 +B4)

only using 7 multiplications(one for each Mk) instead of 8.
We may now express the Ci in terms of Mk:

C1 = M1 +M4 −M5 +M7

C2 = M3 +M5

C3 = M2 +M4

C4 = M1 −M2 +M3 +M6
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Time Complexity
▶ Addition and Subtraction of two matrices takes O(n2)

time. So time complexity can be written as:
T(n) = 7T(n/2)+O(n2)

From Master’s Theorem, time complexity of above method
is O(nlog7) which is approximately O(n2.8074)

▶ Hopcroft and Kerr have proved(1971) that 7
multiplications are necessary in two 2×2 matrices’s
multiplication. Therefore, to further improve the time of
matrix multiplication complexity, it can no longer be based
on the method of calculating the 7-times multiplication of
2×2 matrices. Perhaps a better algorithm for 3×3 or 5×5
matrices should be studied. Currently,the best calculation
time upper bound is O(n2.376).
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Problem Description

▶ Definition: A defective chessboad is a 2k ×2k board of
squares with exactly one defective square

▶ Example:

Figure: Defective chessboads
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Problem Description

Defective Chessboard Problem
▶ The problem is to tile (cover) all nondefective cells using a

triomino.
▶ A triomino is an L shaped object that can cover three

squares of a chessboard.
▶ A triomino has four orientations:

Figure: Triominoes with different orientations
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Tiling A Defective Chessboard

▶ Divide into four smaller chessboards.
▶ One of these is a defective chessboard.
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Tiling A Defective Chessboard

▶ Make the other three chessboards defective by placing a
triomino at their common corner.

▶ Recursively tile the four defective chessboards.
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Time Complexity

▶ Let n = 2k, d is a constant.
▶ Let t(k) be the time taken to tile a 2k ×2k defective

chessboard. Then,

t(k) =
{

d k = 0
4t(k−1)+ c k > 0

▶ Here, c is constant representing time spent on finding the
appropriate position for a triomino and to rotate the
triomino for a required shape.
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t(k) = 4t(k−1)+ c
= 4[4t(k−2)+ c]+ c
= 42t(k−2)+4c+ c
= ...

= 4kt(0)+4k−1c+4k−2c+ ...+42c+4c+ c
= 4kd+4k−1c+4k−2c+ ...+42c+4c+ c
= θ(4k)

= θ(number of triominoes placed)

Since each grid must spend θ(1) time to place each
triomino, it is impossible to get a faster algorithm for this
problem.
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Problem Description

Definition 1:
A polynomial in variable x over a field F (such as, R or C)

is

A(x) =
n−1
∑
j=0

ajxj (1)

where aj ∈ F is called a coefficient.

Problem 1:
The straightforward method of polynomial multiplication is

θ(n2), where n is the degree of polynomials. While the Fast
Fourier Transform (FFT) can reduce the time to θ(nlogn).
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Representation of polynomials

Definition 2:
For the polynomial(1), we have two ways of representing it:

▶ Coefficient Representation:
a = (a0,a1, ...,an−1) is a coefficient representation of (1).

▶ Point-value Representation:
P = {(x0,y0),(x1,y1), ...,(xn−1,yn−1)} is a point-value
representation of (1), where all of the xk are distinct and
yk = A(xk),k = 0,1, ...,n−1.
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Coefficient Representation
Property 1: Evaluating the polynomial (1) at a given point x0
by Horner’s Rule:

A(x0) = a0 +x0(a1 +x0(a2 + ...+x0(an−2 +x0an−1)))

which takes θ(n) time.
Property 2: Addition of n-dimensional coefficient vectors a and
b (i.e., a+b) takes θ(n) time
The convolution: a⊗b = (c0,c1, ...,c2n−2) is

cj =
j

∑
k=0

akbj−k (2)

which indicates that it takes θ(n2) time for polynomial
multiplication by coefficient representation.
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Point-value Representation

▶ By Horner’s rule, it takes θ(n2) time to get a point-value
representation of polynomial(1). If we choose xk cleverly,
the complexity reduces to θ(nlogn).

▶ Definition 3: The process of determining the coefficient
form of a polynomial from a point-value representation is
called interpolation.

▶ Question: Does the interpolation uniquely determine a
polynomial? If not, the concept of interpolation is
meaningless.
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Uniqueness of Interpolation

Theorem 1:
For any set of n point-value

pairs{(x0,y0),(x1,y1), ...,(xn−1,yn−1)}, such that all the xk
values are distinct, there is a unique polynomial A(x) of
degree-bound n such that yk = A(xk),k = 0,1, ...,n−1.

Proof:
Let A(x) = ∑n−1

j=0 ajxj, where aj is undetermined, then we have
1 x0 x2

0 · · · xn−1
0

1 x1 x2
1 · · · xn−1

1
...

...
... . . . ...

1 xn−1 x2
n−1 · · · xn−1

n−1




a0
a1
...

an−1

 =


y0
y1
...

yn−1

 (3)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 30 / 47



Large Number Multiplication
Strassen’s Algorithm for Matrix Multiplication

Defective Chessboard
Polynomials and the FFT

Problem Description
Representation of polynomials
The DFT and FFT
Efficient FFT implementations
Conclusion

Uniqueness of Interpolation

The left matrix is known as a Vandermonde matrix,
denoted by V(x0,x1, ...,xn−1), whose determinant is:

∏
0≤j<k≤n−1

(xk −xj) ̸= 0

Therefore, the solution of coefficients is:

a = V(x0,x1, ...,xn−1)
−1y

The LU decomposition algorithm takes O(n3) time to solve
these equations.
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Lagrange Formula

A fast algorithm for n-point interpolation is

A(x) =
n−1
∑
k=0

yk
∏j̸=k(x−xj)

∏j̸=k(xk−xj)
(4)

, which takes Θ(n2) time.
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Basic Idea of Multiplication
a0,a1, ...,an−1
b0,b1, ...,bn−1

θ(n2)−→ c0,c1, ...,c2n−2

↓ θ(nlogn) ↑ θ(nlogn)
A(ω0

2n),B(ω0
2n)

A(ω1
2n),B(ω1

2n)
...,
...

A(ω2n−1
2n ),B(ω2n−1

2n )
θ(n)−→

C(ω0
2n)

C(ω1
2n)

...
C(ω2n−1

2n )

Theorem 2
The product of two polynomials of degree-bound n can

computed in time θ(nlogn), with both input and output
representations in coefficient form.
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Complex Roots of Unity

Definition 4
A complex nth root of unity is a complex ω such that:

ωn = 1 (5)

There are exactly n complex nth roots of unity: e2πik/n for
k = 0,1, ...,n−1

eiu = cosu+ isinu (6)

is called Euler’s formula. And, ωn = e2πi/n is called the principal
nth root of unity.
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Additive Group

Property 3: The n complex nth roots of unity, form a group
under multiplication, which is isomorphic to (Zn,+).

Example 1: Consider the values
of ω0

8 ,ω
1
8 , ...,ω7

8 , in the complex
plane, where ω8 = e2πi/8 is the
principal 8th root of unity.
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Properties of Complex Roots
Lemma 1: (Cancellation Lemma) ∀n,k,d ∈ N,we have

ωdk
dn = ωk

n

Corollary 1: For any even integer n > 0, we have

ωn/2
n = ω2 =−1

Lemma 2: (Halving Lemma) If n > 0 is even, then

(ωk
n)

2
= ωk

n/2, that is, (ωk+n/2
n )2 = (ωk

n)
2

Lemma 3: (Summation Lemma) For any integer n ≥ 1 and
nonnegative integer k not divisible by n,

n−1
∑
j=0

(ωk
n)

j
= 0
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Discrete Fourier Transform

Definition 5
Without loss of generality, assume that n is a power of 2,

since a given degree-bound can always be raised. Given a
polynomial a = (a0,a1, ...,an−1), define

yk = A(ωk
n) =

n−1
∑
j=0

ajωkj
n (7)

Note: A(x)’s values at the n complex n-th roots of unity.
The vector y = (y0,y1, ...,yn−1) is the Discrete Fourier

Transform (DFT) of a, denoted by y = DFTn(a).
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Fast Fourier Transform

Aim:To compute DFTn(a) in time θ(nlogn), as opposed to the
θ(n2) time of the straightforward method.
Idea: There are 3 steps:

1. A(x) = A′′(x2)+xA′(x2), where{
A′′(x) = a0 +a2x+a4x2 + ...+an−2xn/2−1

A′(x) = a1 +a3x+a5x2 + ...+an−1xn/2−1

So that the problem of evaluating A(x) at ω0
n ,ω1

n , ...ωn−1
n

reduces to step 2.
2. Evaluate the degree-bound n/2 polynomials A′ and A′′ at

points (ω0
n)

2,(ω1
n)

2, ...,(ωn−1
n )2.

3. Combine the results according to step 1.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 38 / 47



Large Number Multiplication
Strassen’s Algorithm for Matrix Multiplication

Defective Chessboard
Polynomials and the FFT

Problem Description
Representation of polynomials
The DFT and FFT
Efficient FFT implementations
Conclusion

Recursive FFT

Recursive FFT
By Halving Lemma,

{(ω0
n)

2,(ω1
n)

2, ...,(ωn−1
n )2}= {ω0

n/2,ω
1
n/2, ...,ω

n/2−1
n/2 }. This

decomposition is the basis for the following recursive FFT
algorithm.

Recursive-FFT(a)
1: n = a.length
2: if n == 1 then
3: return a
4: ωn = e2πi/n

5: ω = 1
6: ω = 1
7: a′′ = (a0,a2, ...,an−2)

8: a′ = (a1,a3, ...,an−1)
9: y′′ = Recursive-FFT(a′′)

10: y′ = Recursive-FFT(a′)
11: for k = 0 to n/2−1 do
12: yk = y′′k +ωy′k
13: yk+n/2 = y′′k −ωy′k
14: ω = ωωn
15: return y

Property 4: By divide-and-conquer method, the time cost of
FFT is T(n) = 2T(n/2)+θ(n) = θ(nlogn).Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 39 / 47
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Interpolation
By (3), DFT can be written by y = Vna, or

y0
y1
y2
y3
...

yn−1


=



1 1 1 1 · · · 1
1 ωn ω2

n ω3
n · · · ωn−1

n
1 ω2

n ω4
n ω6

n · · · ω2(n−1)
n

1 ω3
n ω6

n ω9
n · · · ω3(n−1)

n
...

...
...

...
. . .

...
1 ωn−1

n ω2(n−2)
n ω3(n−1)

n · · · ω(n−1)(n−1)
n




a0
a1
a2
a3
...

an−1


where (k, j) entry of Vn is ωkj

n for j,k = 0,1, ...,n−1. For
the inverse operation of DFTn , we write as a = DFT−1

n (y), we
proceed by multiplying y by V−1

n .
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Interpolation

Theorem 3:
For j,k = 0,1, ...,n−1, the (j,k) entry of V−1

n is ω−kj
n /n.

Proof :
Consider the (j, j′) entry of V−1

n Vn:

[V−1
n Vn]jj′ =

n−1
∑
k=0

(ω−kj
n /n)(ωkj′

n )

=
n−1
∑
k=0

ωk(j′−j)
n /n

If j′ = j, then [V−1
n Vn]jj′ = 1, otherwise it is 0 by Summation

Lemma.
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Inverse DFT

Corollary 2 :
a = DFT−1

n (y) is given by

aj =
1
n

n−1
∑
k=0

ykω−kj
n (8)

DFTn vs DFT−1
n :
DFTn DFT−1

n
yk = A(ωk

n)

= ∑n−1
j=0 ajωkj

n
aj =

1
n ∑n−1

k=0 ykω−kj
n
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Recall: Basic Idea of Multiplication
a0,a1, ...,an−1
b0,b1, ...,bn−1

θ(n2)−→ c0,c1, ...,c2n−2

↓ θ(nlogn) ↑ θ(nlogn)
A(ω0

2n),B(ω0
2n)

A(ω1
2n),B(ω1

2n)
...,
...

A(ω2n−1
2n ),B(ω2n−1

2n )
θ(n)−→

C(ω0
2n)

C(ω1
2n)

...
C(ω2n−1

2n )

Theorem 2
The product of two polynomials of degree-bound n can

computed in time θ(nlogn), with both input and output
representations in coefficient form.
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Efficient FFT Implementation
Common subexpression in compiler terminology

Original Improvement

for k = 0 to n/2−1
do yk = y′′

k +ωy′
k

yk+n/2 = y′′
k −ωy′

k
ω = ωωn

for k = 0 to n/2−1
do t = ωy′

k
yk = y′′

k + t
yk+n/2 = y′′

k − t
ω = ωωn

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 44 / 47



Large Number Multiplication
Strassen’s Algorithm for Matrix Multiplication

Defective Chessboard
Polynomials and the FFT

Problem Description
Representation of polynomials
The DFT and FFT
Efficient FFT implementations
Conclusion

Butterfly Operation
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Recursive FFT
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Conclusions

▶ Fourier analysis is not limited to 1-dimensional data. It is
widely used in image processing to analyze data in 2 or
more dimensions.

▶ The history of FFT is traced as far back as C. F. Gauss in
1805.

▶ J. W. Cooley and J. W. Tukey are widely credited with
devising the FFT in 1965.
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