Introduction to Algorithms
Topic 6-4 : Divide and Conquer

Xiang-Yang Li and Haisheng Tan

School of Computer Science and Technology
University of Science and Technology of China (USTC)

Fall Semester 2024

Introduction to Algorithms



Outline

Large Number Multiplication
Strassen’s Algorithm for Matrix Multiplication
Defective Chessboard

Polynomials and the FFT

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Overview

In divide and conquer approach, a problem is divided into
smaller problems, then the smaller problems are solved
independently, and finally the solutions of smaller problems are
combined into a solution for the large problem.

Generally, divide-and-conquer algorithms have three parts:

» Divide: Divide the problem into a number of sub-problems
that are smaller instances of the same problem.

» Conquer: Conquer the sub-problems by solving them
recursively. If they are small enough, solve the
sub-problems as base cases.

» Combine: Combine the solutions to the sub-problems into
the solution for the original problem.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Pros and cons

Divide and conquer approach supports parallelism as
sub-problems are independent. Hence, an algorithm, which is
designed using this technique, can run on the multiprocessor
system or in different machines simultaneously.

In this approach, most of the algorithms are designed using
recursion, hence memory management is very high. For
recursive function stack is used, where function state needs to
be stored.
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Large Number Multiplication

Problem Description
Solution

Problem Description

» Input: two n— bit integers X and Y.
» Output: product of X and Y.
> Example: X = 1980 Y =2315

1980
X 2315
9900
1980
5940
+ 3960
= 4573700

This is the algorithm you learned in grade school. Notice it
takes O(n?) time.
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Large Number Multiplication
Problem Description
Solution

Solution

Divide and Conquer

X =

c d

Y =

X=a-22240b Y=c-2%/24d
XY =ac- 2"+ (ad+bc) - 22 + bd
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Large Number Multiplication
Problem D
Solution

Being Clever

Time Complexity
[ O(1) n=1
T(n) = { 4T(1/2)+O(m) n>1
whose solution we claimed to be T(n) = O(n?). Compared
to the original method, this method has not been significantly
improved.In order to reduce the time complexity, we must
reduce the number of multiplications.
XY =ac-2" + (ad+be) - 2% + bd (1)
XY =ac-2" — ((a—b)(c—d) —ac—bd) - 22+ bd (2)
XY =ac-2"+((a+b)(c+d)—ac—bd)-2%24+bd  (3)
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Large Number Multiplication
Problem Description
Solution

Being Clever

Analysis

The complexity of the last two XY multiplication schemes
is O(n'°83), but considering a4 c,b+d may get the result of
n—+ 1 bit, which makes the size of the problem bigger, so it does
not choose the third option.

[ O(1) n=1
T(n) = { 3T(n/2)+O0() n>1

Thus, T(n) = O(n'°8%) = O(n'5?)
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Large Number Multiplication
Problem Description
Solution

Being Clever

» Is there a faster way?

» If you divide a large integer into more segments, combine
them in a more complicated way,it will be possible to get a
better algorithm.

» In the end, this idea led to the fast Fourier transform. This
method can also be seen as a complex divide calculation
method, for large integer multiplication, it can be solved in
O(nlogn) time.
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Strassen’s Algorithm for Matrix Multiplication Problem Description
Solution

Problem Description

Let us consider two matrices A and B. We want to
calculate the resultant matrix C by multiplying A and B.

Naive Method

If A = (ajj) and B = (byj) are square n x n matrices, then in
the product C = A -B, we define the entry c;; , fori,j =1,2,...,n,
by
Cij = Y—1 aik - bij. We must compute n? matrix entries, and
each is the sum of n values.
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Strassen’s Algorithm for Matrix Multiplication Problem Description
Solution

Naive Method

Square-Matrix-Multiply (A, B)
1: n= A.rows

2: let C be a new n X n matrix
3: fori=1ton do

4 for j=1 ton do

5: Cij = 0

6 fork=1ton do

7 Cij = Cij +ajk bkj
8: return C

Complexity

Here, we assume that integer operations take O(1) time. There
are three for loops in this algorithm and one is nested in other.
Hence, the algorithm takes O(n®) time to execute
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Strassen’s Algorithm for Matrix Multiplication Problem Description
Solution

Simple Divide and Conquer

Following is simple Divide and Conquer method to
multiply two square matrices.
» Divide matrices A and B in 4 sub-matrices of size
N/2 xN/2 as shown in the below diagram.
» Calculate following values recursively.

A1 Az Bl B2 _
(& &)= (5 5)
( A1B1 +A2B3 A1Bo+AoBy )
A3B1+A4Bs A3Bo+A4By
In the above method, we do 8 multiplications for matrices
of size N/2 x N/2 and 4 additions. Addition of two matrices
takes O(n?) time. So the time complexity is
T(n) = 8T (n/2) +O(n?). From Master’s Theorem, time
complexity of above method is O(n®) which is unfortunately
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Strassen’s Algorithm for Matrix Multiplication Problem Description
Solution

Strassen’s Matrix Multiplication

In the above divide and conquer method, the main
component for high time complexity is 8 recursive calls. The
idea of Strassen’s method is to reduce the number of recursive
calls to 7.

Strassen’s method is similar to above simple divide and
conquer method in the sense that this method also divide
matrices to sub-matrices of size N/2 x N/2 as shown in the
above slide, but in Strassen’s method, the four sub-matrices of
result are calculated using following formula.
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Strassen’s Algorithm for Matrix Multiplication Problem Description
Solution

Strassen’s Matrix Multiplication

The Strassen algorithm defines instead new matrices:
M; = (A1 +A4)(B1+By) My = (A3 +A4)B;

Ms = A;(By —By) My = A4(B3 —By)

Ms = (A;+A2)By Mg = (A3 —A1)(B1+Bo)
M7 = (A2 — A4)(B3 +By)

only using 7 multiplications(one for each My) instead of 8.
We may now express the Cj in terms of My:

Ci =M; +My—Ms+ My
Co =M3+ M5
C3 =M+ My
Cs=M; —M2+ M3+ Mg
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Strassen’s Algorithm for Matrix Multiplication Problem Description
Solution

Time Complexity

» Addition and Subtraction of two matrices takes O(n?)
time. So time complexity can be written as:

T(n) = 7T(n/2) + O(n?)

From Master’s Theorem, time complexity of above method
is O(n'°87) which is approximately O(n?8074)

» Hopcroft and Kerr have proved(1971) that 7
multiplications are necessary in two 2x2 matrices’s
multiplication. Therefore, to further improve the time of
matrix multiplication complexity, it can no longer be based
on the method of calculating the 7-times multiplication of
2x2 matrices. Perhaps a better algorithm for 3x3 or 5x5
matrices should be studied. Currently,the best calculation
time upper bound is O(n?370).
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Problem Description
Defective Chessboard Solution

Problem Description

» Definition: A defective chessboad is a 2% x 2K board of
squares with exactly one defective square

" b oW

(@ k=0 (b)k=1 (c) k=1 (d) k=1

» Example:

|~ |

[ ]

(e) k=2 (f) k=2 (9) k=2

Figure: Defective chessboads
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Problem Description
Defective Chessboard Solution

Problem Description

Defective Chessboard Problem

» The problem is to tile (cover) all nondefective cells using a
triomino.

» A triomino is an L shaped object that can cover three
squares of a chessboard.

» A triomino has four orientations:

(a) (b) (c) (d)

Figure: Triominoes with different orientations
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Problem Description
Defective Chessboard Solution

Tiling A Defective Chessboard

» Divide into four smaller chessboards.

» One of these is a defective chessboard.

=
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Problem Description
Defective Chessboard Solution

Tiling A Defective Chessboard

> Make the other three chessboards defective by placing a
triomino at their common corner.

» Recursively tile the four defective chessboards.

=
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Problem Description
Defective Chessboard Solution

Time Complexity

» Let n=2X, d is a constant.

» Let t(k) be the time taken to tile a 25 x 2K defective
chessboard. Then,

d k=0
t(k):{ 4t(k—1)+c k>0

» Here, c is constant representing time spent on finding the
appropriate position for a triomino and to rotate the
triomino for a required shape.
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Problem Description
Defective Chessboard Solution

Time Complexity

t(k) =4t(k—1)+c
= 4[4t(k—2) +c| +c
=4%t(k—2)+4c+c

= 4% (0) + 45 L+ 45 2c+ ... +4%c+ 4c+c
=45d+4te+ 42+ + 4%+ detc
= 0(4%)
= 6(number of triominoes placed)
Since each grid must spend 0(1) time to place each

triomino, it is impossible to get a faster algorithm for this
problem.
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Problem Description

Definition 1:
A polynomial in variable x over a field F (such as, R or C)
is

n—1
Ax)=Y ajx! (1)
i=0

where a; € F is called a coefficient.

Problem 1:

The straightforward method of polynomial multiplication is
6(n?), where n is the degree of polynomials. While the Fast
Fourier Transform (FFT) can reduce the time to 6(nlogn).
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Problem Description
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Representation of polynomials

Definition 2:
For the polynomial(1), we have two ways of representing it:

» Coefficient Representation:
a= (ag,a1,...,an—_1) is a coefficient representation of (1).
» Point-value Representation:
P ={(x0,v0), (x1,¥1)s -+, (Xn—1,¥n—1)} is a point-value
representation of (1), where all of the xy are distinct and
Yk = A(Xk),k = 07 1, coey L — 1.
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Polynomials and the FFT

Conclusion

Coefficient Representation

Property 1: Evaluating the polynomial (1) at a given point xg
by Horner’s Rule:

A(x0) =ag+xo(a1 +xo(ag+ ... +xo(an—2 + Xpan-1)))

which takes 6(n) time.

Property 2: Addition of n-dimensional coefficient vectors a and
b (i.e., a+Db) takes 6(n) time

The convolution: a®b = (cg,cq,...,Con—2) is

i
cj= Y abjx (2)
k=0

which indicates that it takes 8(n?) time for polynomial
multiplication by coefficient representation.
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Point-value Representation

» By Horner’s rule, it takes 8(n?) time to get a point-value
representation of polynomial(1). If we choose xi cleverly,
the complexity reduces to 6 (nlogn).

» Definition 3: The process of determining the coefficient
form of a polynomial from a point-value representation is
called interpolation.

» Question: Does the interpolation uniquely determine a
polynomial? If not, the concept of interpolation is
meaningless.
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Uniqueness of Interpolation

Theorem 1:

For any set of n point-value
pairs{(x0,y0), (X1,¥1),--s (Xn—1,¥n-1) }, such that all the xy
values are distinct, there is a unique polynomial A(x) of
degree-bound n such that yi = A(xx),k=0,1,...,n—1.

Proof:

Let A(x) = Z}lz_ol ajx), where a; is undetermined, then we have

2 n—1
1 X0 X0 Xy aQ Yo
1 2 n—1
X1 X1 0oo X1 al Y1
o A G
=1
1 xp-1 Xr21 1 Xﬁ,l an—1 Yn-1
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Problem De ption
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Uniqueness of Interpolation

The left matrix is known as a Vandermonde matrix,
denoted by V(xg,X1,...,Xn—1), whose determinant is:

[T Ga—x)#0

0<j<k<n—1
Therefore, the solution of coefficients is:
_ -1
a = V(Xo,Xl, ...,anl) y

The LU decomposition algorithm takes O(n?) time to solve
these equations.
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Lagrange Formula

A fast algorithm for n-point interpolation is

AG) = Xvir — ',) (4)
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Basic Idea of Multiplication

aQ,at,---,an—1 9(n2)

bOablv"'abnfl — ’C05C17"‘7C2n72‘

4 6(nlogn) 1 0(nlogn)
A(w3,),B(05,) C(ws,)
A(;,),B(@y,) C(wh)

n— g n— 6(n :nf
A(w3i ™), B(oz ™) Clom )

Theorem 2

The product of two polynomials of degree-bound n can
computed in time 6(nlogn), with both input and output
representations in coefficient form.
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Complex Roots of Unity

Definition 4
A complex nth root of unity is a complex @ such that:

o'=1 (5)

There are exactly n complex nth roots of unity: e?#&/? for
k=0,1,...,n—1

e = cosu+isinu (6)

is called Euler’s formula. And, @, = e*¥/™ is called the principal
nth root of unity.
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Additive Group

Property 3: The n complex nth roots of unity, form a group
under multiplication, which is isomorphic to (Zy,+).

A
Example 1: Consider the values A
of of,wi,...,0f, in the complex ot ot unity
plane, where wg = e2™/8 is the « >
o o o -1 1
principal 8th root of unity.
A,
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Properties of Complex Roots

Lemma 1: (Cancellation Lemma) Vn,k,d € N,we have
dk k
g, = Oy
Corollary 1: For any even integer n > 0, we have

wp'

Lemma 2: (Halving Lemma) If n > 0 is even, then

() = 0,. that is, (on™*)?= (k)

Lemma 3: (Summation Lemma) For any integer n > 1 and
nonnegative integer k not divisible by n,

n—1 .
Y (o) =0
j=0
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Discrete Fourier Transform

Definition 5

Without loss of generality, assume that n is a power of 2,
since a given degree-bound can always be raised. Given a
polynomial a = (ag,a,...,an_1), define

n—1
yie=A(wy) = Y a0 (7)
j=0

Note: A(x)’s values at the n complex n-th roots of unity.
The vector y = (y0,y1,.--syn—1) is the Discrete Fourier
Transform (DFT) of a, denoted by y = DFT,(a).
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Polynomials and the FFT FET implementations

Conclusion

Fast Fourier Transform

Aim:To compute DFT)(a) in time 6(nlogn), as opposed to the
6(n?) time of the straightforward method.
Idea: There are 3 steps:
1. A(x) = A"(x?) +xA’(x?), where
A" (X) = agtagX+ a4x2 4+ ...+ an,gxn/2’1
A/(X) =aj t+aszx+ a5x2 + ...+ an_lxn/%l
So that the problem of evaluating A(x) at o, ®},...o" !
reduces to step 2.
2. Evaluate the degree-bound n/2 polynomials A’ and A” at
points (00)2, (@))?, .., (@1 1)2
3. Combine the results according to step 1.
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Recursive FFT

Recursive FFT
By Halving Lemma,

2-1
(0D (0% (017} = {00, @) 5, -, @) This
decomposition is the basis for the following recursive FFT

algorithm.

Recursive-FFT(a) 8: a’ = (a1,a3,...,an 1)

1: n = a.length 9: y” = Recursive-FFT(a”)
2: if n==1 then 10: y’ = Recursive-FFT(a/)
3 return a 11: for k=0 ton/2—1 do
4: @, = e2m/n 12: Yk = Y+ 0y}

5 W= 13: Yk+4n/2 = yi — oy}
6: w=1 14: o= 0o,

7: o = (ag,a2,...,an_2) 15: return y

Property 4: By divide-and-conquer method, the time cost _of
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Interpolation

By (3), DFT can be written by y = Vya, or

o 1 1 1 1 1
- 1 oy 2 o3 oz)l(frln
y2 1 o oy ol o
o= 1 et o i
Yn-1 1 w111171 wﬁ(nﬂ) wr?;(nfl) a)r(ln 1)(“ 1)

a0

aj

ag

ag

an—1

Where (k, J) entry of Vi, is @ for j,k=0,1,...,n—1. For
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Interpolation

Theorem 3: |
For j,k=0,1,...n—1, the (j,k) entry of V! is a);kJ/n'

Proof :
Consider the (j,j') entry of V 1V,:

n—1

[Va' Valyy = X (0.9/n) (o)

If j =j, then [Vﬁlvn]jj' = 1, otherwise it is 0 by Summation
Lemma.
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Inverse DFT

Corollary 2 :
a=DFT,!(y) is given by

1 n—1
aj = Yo, (8)
L vy

DFT, vs DFT,!:

DFT, DFT. !
vk = A(of)

n 1
kj =D @y
JnOlaanJ k= oy
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Recall: Basic Idea of Multiplication

aQ,at,---,an—1 9(n2)

bOablv"'abnfl — ’C05C17"‘7C2n72‘

4 6(nlogn) 1 0(nlogn)
A(w3,),B(05,) C(ws,)
A(;,),B(@y,) C(wh)

.y

n— n— 6(n
Az "), Bz )

Clagm )

Theorem 2

The product of two polynomials of degree-bound n can
computed in time 6(nlogn), with both input and output
representations in coefficient form.
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Efficient FFT Implementation

Common subexpression in compiler terminology

Yk

Yk

Original Improvement
fork=0t 2—1
fork=0ton/2—1 o 0 O,H/
/7 / dO t = (J)yk
do yx =y + @y, o
o / Yk =Yt t
Yk+n/2 = Yk — WYy ¥ —y_t
O =00, k+n/2 k
=00,
> vtk
WK

Li and Haisheng Tan
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Polynomials and the FFT

Butterfly Operation

Yk >y WKy
DNEeer

, wnk % DU er y _ . § .

Yk > Yk TWn'Vk

{a()y ap, ag, as, d4, as, de, 37}

/\

{ao, ag, a4, 3«6} {81, as, as, 87}
{ao, 84} {az, 36} {81, 35} {83, 87}

/NN /N TN

{ag} {ad fat {agt {a} f{asd  f{ast  {a7}
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Problem Description
Representation of polynomials
The DFT and FFT

Efficient FFT implementations
Conclusion

Y6
Wi WsWsWz >

Yl A\
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Conclusions

» Fourier analysis is not limited to 1-dimensional data. It is
widely used in image processing to analyze data in 2 or
more dimensions.

» The history of FFT is traced as far back as C. F. Gauss in
1805.

> J. W. Cooley and J. W. Tukey are widely credited with
devising the FFT in 1965.
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