
Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Introduction to Algorithms
0-1 Knapsack Problem

Xiang-Yang Li and Haisheng Tan

School of Computer Science and Technology
University of Science and Technology of China (USTC)

Fall Semester 2024

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 1 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Outline

Knapsack Problem

Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack

Discussion

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 2 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Contents

Knapsack Problem

Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack

Discussion

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 3 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Knapsack Problem

▶ The knapsack problem is a NP-complete problem of
combinatorial optimization. Similar problems often appear in the
fields of business, mathematics, computational complexity
theory, cryptography, and applied mathematics.

▶ The knapsack problem has been studied for more than a century,
with early works dating as far back as 1897.

▶ Application: find the least wasteful way to cut raw materials,
choose investment and portfolio, choose asset-backed asset
securitization, generate keys for Merkle-Hellman and other
backpack cryptosystems.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 4 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Knapsack Problem

▶ Suppose we are planning a hiking trip; and we are, therefore,
interested in filling a knapsack with items that are considered
necessary for the trip.

▶ There are n different item types that are deemed desirable; these
could include bottle of water, apple, orange, sandwich, and so
forth. Each item type has a given set of two attributes, namely a
weight (or volume) and a value that quantifies the level of
importance associated with each unit of that type of item.

▶ Since the knapsack has a limited weight (or volume) capacity,
the problem of interest is to figure out how to load the knapsack
with a combination of units of the specified types of items that
yields the greatest total value.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 5 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Knapsack Problem

Problem Definition(Knapsack):
▶ Input: Knapsack takes a set S of n items, each with benefit

bi and weight wi, and a knapsack with weight bound W
(for simplicity we assume that all elements have wi ≤ W).

▶ Output: Find a subset of items I ⊆ S that maximizes
∑i∈I bi, and satisfies the constraint ∑i∈I wi ≤ W.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 6 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Knapsack Problem

There are two versions of the problem:
▶ Fractional knapsack problem: Items are divisible; you can

take any fraction of an item.
▶ 0-1 knapsack problem: Items are indivisible; you either

take an item or not.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 7 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Contents

Knapsack Problem

Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack

Discussion

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 8 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Greedy Algorithm for Knapsack

Greedy-Algorithm()
1: Sort items in non-increasing order of bi

wi
.

2: Greedily pick items in the above order.
▶ To solve the fractional problem, we first compute the

benefit per weight bi/wi for each item;
▶ Obeying a greedy strategy, we begins by taking as much as

possible of the item with the greatest value per pound;
▶ Then we takes the next greatest valuable item, and so forth

until he fills the knapsack;
▶ Thus, by sorting the items by value per pound, the greedy

algorithm runs in O(n lgn) time.
▶ The fractional knapsack problem has the greedy-choice

property.
Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 9 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Greedy Algorithm for Knapsack

▶ But this greedy strategy does not work for the 0−1 knapsack
problem. To see the reason, consider the problem instance
illustrated in Figure 16.2(a).

▶ The benefit per weight of item 1 is 6 per weight, which is greater
than that of either item 2 (5 per weight) or item 3 (4 per weight).

▶ However, the optimal solution takes items 2 and 3, leaving 1
behind. The two possible solutions that involve item 1 are both
suboptimal.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 10 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Greedy Algorithm for Knapsack

▶ The reason is that taking item 1 we are unable to fill the
knapsack to capacity, and the empty space lowers the
effective profit per size of our load.

▶ But for the comparable fractional problem, the greedy
strategy, which takes item 1 first, does yield an optimal
solution, as shown in Figure 16.2(c).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 11 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Greedy Algorithm for Knapsack: Very Bad

Greedy performs arbitraruly bad in the worst case.

Assume that there are two items. The first one has weight ε > 0
and benefit 2ε, and the second one has weight B and benefit B.
The capacity of the knapsack is B.

Our greedy algorithm will only pick the small item, and the
benefit is 2ε. The optimal solution is to pick the second item,
with benefit B. This example makes this greedy method a
pretty bad algorithm.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 12 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Greedy-Redux Algorithm for Knapsack: Small Twist

Therefore, we make the following small adjustment to our
greedy algorithm:

Greedy-Algorithm Redux()
1: Sort items in non-increasing order of bi

wi
// we here

denote each item as ai, where 1 ≤ i ≤ n.
2: Greedily add items until we hit an item ai that is too big.

(∑i
k=1 wk > W ≥ ∑i−1

k=1 wk).
3: Pick the better of {a1,a2, ...,ai−1} and ai.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 13 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Greedy-Redux Algorithm for Knapsack: Bounded
Approximation Ratio

Theorem: Greedy Algorithm Redux is a 2-approximation for
the knapsack problem.
Proof: We employed a greedy algorithm. Therefore we can say
that if our solution is suboptimal, we must have some leftover
space Wrest at the end. Imagine for a second that our algorithm
was able to take a fraction of an item. Then, by adding Wrest

wi
bi

to our knapsack value, we would either match or exceed OPT
(remember that OPT is unable to take fractional items), i.e.,
∑i−1

k=1 bk +
Wrest

wi
bi ≥ OPT.

Therefore, either ∑i−1
k=1 bk ≥ 1

2OPT or bi ≥ Wrest
wi

bi ≥ 1
2OPT

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 14 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Contents

Knapsack Problem

Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack

Discussion

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 15 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming

▶ We can do better with an algorithm based on dynamic
programming.

▶ We need to carefully identify the subproblems.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 16 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming

Defining a Subproblem
▶ Given a knapsack with maximum capacity W, and a set S

consisting of n items
▶ Each item i has some weight wi and benefit bi (Here, we

can assume all wi and W are integer values.)
▶ Problem: How to pack the knapsack to achieve maximum

total value of packed items?
▶ Let’s add another parameter: w, which will represent the

weight of the knapsack for a subproblem.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 17 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming

Defining a Subproblem
▶ The subproblem will then be to compute V[k,w], i.e., to

find an optimal solution for Sk = items labeled1,2, ..k in a
knapsack of size w

▶ Assuming knowing V[i, j], where i = 0,1,2, . . . ,k−1,
j = 0,1,2, . . . ,w, how to derive V[k,w]?

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 18 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming

Recursive Formula for subproblems:

V[k,w] =

{
V[k−1,w] if wk > w
max{V[k−1,w],V[k−1.w−wk]+bk} else

It means, that the best subset of Sk that has total weight w is:
▶ the best subset of Sk−1 that has total weight ≤ w, or
▶ the best subset of Sk−1 that has total weight≤ w−wk plus

the item k

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 19 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming

DP for knapsack()
1: for w = 0 to W do
2: V[0,w]=0
3: for i = 1 to n do
4: V[i,0]=0
5: for i = 1 to n do
6: for w = 0 to W do
7: if wi ≤ W then
8: if bi +V[i−1,w−wi]> V[i−1,w] then
9: V[i,w] = bi +V[i−1,w−wi]

10: else
11: V[i,w] = V[i−1,w]

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 20 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming

▶ What is the running time of this algorithm? O(nW)

▶ Let’s run our algorithm on the following data:
n = 4 (number of items)
W = 5 (weight bound)
Elements (weight, benefit):
(2,3), (3,4), (4,5), (5,6)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 21 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming Example

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 22 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming Example

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 23 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming Example

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 24 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming Example

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 25 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming Example

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 26 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming Example

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 27 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming Example

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 28 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming Example

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 29 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming Example

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 30 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming Example

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 31 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming Example

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 32 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming Example

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 33 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming Example

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 34 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming Example

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 35 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming Example

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 36 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming Example

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 37 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming Example

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 38 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming

How to find actual Knapsack Items
▶ All of the information we need is in the table.
▶ V[n,W] is the maximal value of items that can be placed in

the Knapsack.
▶ Let i = n and k = W.

find actual knapsacks items()
1: if i = n and k = W then
2: mark the i-th item as in the knapsack
3: i = i−1,k = k−wi
4: else
5: i = i−1

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 39 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming Example

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 40 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming Example

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 41 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming Example

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 42 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming Example

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 43 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming Example

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 44 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming Example

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 45 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Dynamic Programming Example

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 46 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Contents

Knapsack Problem

Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack

Discussion

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 47 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Discussion : Pseudo-polynomial

Pseudo-polynomial time:
a numeric algorithm runs in pseudo-polynomial time if its
running time is a polynomial in the numeric value of the input
— but not necessarily in the length of the input (the number of
bits required to represent it)
▶ The Running time of dynamic programming algorithm on

0-1 Knapsack problem is O(W∗n), the number W needs
logW bits to describe, so it is pseudo-polynomial.

▶ Other pseudo-polynomial algorithm: Primality testing

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 48 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Discussion: Another DP apprach, Pseudo-polynomial

▶ Let P be the profit of the most profitable object, i.e.
P = maxa∈S p(a). From this, we can upper bound the profit
that can be achieved as nP for the n objects. Here, we can
assume the benefit of each item are interger values.

▶ For each i ∈ {1, ...,n} and p ∈ {1, ...,nP}, let Si,p denote a
subset of {a1, ...,ai} that has a total profit of exactly p and
takes up the least amount of sapce possible.

▶ Let A(i,p) be the size of the set Si,p, with a value of ∞ to
denote no such subset.

▶ For A(i,p), we have the base case A(1,p) where A(1,p(a1))
is s(a1) and all other values are ∞.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 49 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Discussion: Another DP apprach, Pseudo-polynomial

▶ We can use the following recurrence to caculate all values
for A(i,p):

A(i+1,p)=
{

min{A(i,p),s(ai+1)+A(i,p−p(ai+1))}, if p(ai+1)≤ p
A(i,p), otherwise

▶ The optimal subset then corresponds with the set Sn,p for
which p is maximized and A(n,p)≤ B. Since this iterates
through at most n different values to caculate each A(i,p)
we get a total running time of O(n2P) and thus a
pseudo-polynomial algorithm for knapsack.

▶ It is easy to modify the above DP algorithm to achieve a
full polynomial-time approximation scheme (FPTAS) for
0-1 knapsack.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 50 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Another Dynamic Programming for Knapsack

DP for knapsack()
1: Let P be the maximum benefit of all items.
2: Given ε > 0, let K = ε·P

n .
3: for each object ai do
4: define a new profit p′(ai) = ⌊p(ai)

K ⌋.
5: With these as profits of n items, using the dynamic

programming algorithm presented in previous slide, find the
most profitable set, say S′.

6: Output S′ as the final solution for the original knapsack
problem

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 51 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Another Dynamic Programming for Knapsack

Theorem
The set S′, output by the aforementioned algorithm, satisfies
that

P(S′)≥ (1− ε) ·OPT.

Here P(S′) denotes the profit (or benefit) from the set S′, and
OPT is the optimum benefit of the original problem.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 52 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Another Dynamic Programming for Knapsack

Proof.
Let O be the optimal set for the original problem, and let P′(X)
be the modified profit of set X with profit function p′(). Clearly,

p(a)−K ≤ K ·p′(a)≤ p(a);

P(O)−K ·P′(O)≤ n ·K.

Then we have

P(S′)≥K ·P′(S′)≥K ·P′(O)≥P(O)−nK=OPT−ε ·P≥ (1−ε)OPT

This finishes the proof.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 53 / 54



Knapsack Problem
Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack
Discussion

Discussions: Variations of Knapsack Problem
There are many variations of the knapsack problem that have
arisen from the vast number of applications of the basic
problem.
▶ Basic knapsack: n items, each with benefit bi and weight

wi, and a knapsack with weight bound W.
▶ Unbounded knapsack problem: For each item ai, it can be

selected unlimited times, i.e., we do not put any upper
bounds on the number of times an item may be selected.

▶ Bounded knapsack problem: For each item ai, it can only
be selected by at most ki times in the final solution, i.e.,
there is an upper bound that an item may be selected.

▶ Multidimensional knapsack problem There are more than
one constraints (for example, both a volume limit and a
weight limit). This problem has 0-1, bounded, and
unbounded etc. variants.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 54 / 54


	Knapsack Problem
	Greedy Algorithm for Knapsack
	Dynamic Programming Approach for Knapsack
	Discussion

