Introduction to Algorithms 0-1 Knapsack Problem

Xiang-Yang Li and Haisheng Tan

School of Computer Science and Technology University of Science and Technology of China (USTC)

Fall Semester 2024

 \mathbb{E} -990

 $4.32 \times$

 $\overline{}$

 θ

Outline

Knapsack Problem

Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack

Discussion

 $\overline{}$

 θ

 \equiv

i.

 Q

Contents

Knapsack Problem

Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack

Discussion

 $\overline{}$

 θ

ä,

i.

Knapsack Problem

- ▶ The knapsack problem is a NP-complete problem of combinatorial optimization. Similar problems often appear in the fields of business, mathematics, computational complexity theory, cryptography, and applied mathematics.
- ▶ The knapsack problem has been studied for more than a century, with early works dating as far back as 1897.
- ▶ Application: find the least wasteful way to cut raw materials, choose investment and portfolio, choose asset-backed asset securitization, generate keys for Merkle-Hellman and other backpack cryptosystems.

 \overline{a}

 QQQ

Knapsack Problem

- ▶ Suppose we are planning a hiking trip; and we are, therefore, interested in filling a knapsack with items that are considered necessary for the trip.
- \triangleright There are n different item types that are deemed desirable; these could include bottle of water, apple, orange, sandwich, and so forth. Each item type has a given set of two attributes, namely a weight (or volume) and a value that quantifies the level of importance associated with each unit of that type of item.
- ▶ Since the knapsack has a limited weight (or volume) capacity, the problem of interest is to figure out how to load the knapsack with a combination of units of the specified types of items that yields the greatest total value.

 $rac{1}{2}$

Knapsack Problem

Problem Definition(Knapsack):

- \blacktriangleright Input: Knapsack takes a set S of n items, each with benefit b_i and weight w_i , and a knapsack with weight bound W (for simplicity we assume that all elements have $w_i \leq W$).
- ▶ Output: Find a subset of items I *⊆* S that maximizes $\sum_{i\in I} b_i$, and satisfies the constraint $\sum_{i\in I} w_i \leq W$.

 $rac{1}{2}$

Knapsack Problem

There are two versions of the problem:

- \blacktriangleright Fractional knapsack problem: Items are divisible; you can take any fraction of an item.
- \blacktriangleright 0-1 knapsack problem: Items are indivisible; you either take an item or not.

 \overline{a}

Ξ

Contents

Knapsack Problem

Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack

Discussion

 OQ

 \equiv

 \Rightarrow

 \Box

 θ

Greedy Algorithm for Knapsack

Greedy-Algorithm()

- 1: Sort items in non-increasing order of $\frac{b_i}{w_i}$.
- 2: Greedily pick items in the above order.
- ▶ To solve the fractional problem, we first compute the benefit per weight bi*/*wⁱ for each item;
- ▶ Obeying a greedy strategy, we begins by taking as much as possible of the item with the greatest value per pound;
- \blacktriangleright Then we takes the next greatest valuable item, and so forth until he fills the knapsack;
- ▶ Thus, by sorting the items by value per pound, the greedy algorithm runs in O(nlgn) time.
- ▶ The fractional knapsack problem has the greedy-choice property.

 $rac{1}{2}$

Greedy Algorithm for Knapsack

- ▶ But this greedy strategy does not work for the 0*−*1 knapsack problem. To see the reason, consider the problem instance illustrated in Figure 16.2(a).
- \triangleright The benefit per weight of item 1 is 6 per weight, which is greater than that of either item 2 (5 per weight) or item 3 (4 per weight).
- \blacktriangleright However, the optimal solution takes items 2 and 3, leaving 1 behind. The two possible solutions that involve item 1 are both suboptimal.

Greedy Algorithm for Knapsack

- \blacktriangleright The reason is that taking item 1 we are unable to fill the knapsack to capacity, and the empty space lowers the effective profit per size of our load.
- \triangleright But for the comparable fractional problem, the greedy strategy, which takes item 1 first, does yield an optimal solution, as shown in Figure 16.2(c).

Greedy Algorithm for Knapsack: Very Bad

Greedy performs arbitraruly bad in the worst case.

Assume that there are two items. The first one has weight $\varepsilon > 0$ and benefit 2ε , and the second one has weight B and benefit B. The capacity of the knapsack is B.

Our greedy algorithm will only pick the small item, and the benefit is 2ε . The optimal solution is to pick the second item, with benefit B. This example makes this greedy method a pretty bad algorithm.

 OQ

Greedy-Redux Algorithm for Knapsack: Small Twist

Therefore, we make the following small adjustment to our greedy algorithm:

Greedy-Algorithm Redux()

- 1: Sort items in non-increasing order of $\frac{b_i}{w_i}$ denote each item as a_i , where $1 \leq i \leq n$. // we here
- 2: Greedily add items until we hit an item a_i that is too big. $\label{eq:2} (\underline{\Sigma}_{k=1}^i\,w_k > W \geq \underline{\Sigma}_{k=1}^{i-1}\,w_k).$
- 3: Pick the better of ${a_1, a_2, ..., a_{i-1}}$ and a_i .

 $rac{1}{2}$

Greedy-Redux Algorithm for Knapsack: Bounded Approximation Ratio

Theorem: Greedy Algorithm Redux is a 2-approximation for the knapsack problem.

Proof: We employed a greedy algorithm. Therefore we can say that if our solution is suboptimal, we must have some leftover space W_{rest} at the end. Imagine for a second that our algorithm was able to take a fraction of an item. Then, by adding $\frac{W_{rest}}{w_i}$ b_i to our knapsack value, we would either match or exceed \overrightarrow{OPT} (remember that OPT is unable to take fractional items), i.e., $\sum_{k=1}^{i-1}b_k+\frac{W_{\text{rest}}}{w_i}$ $\frac{b_{\text{rest}}}{w_i}$ _{b_i ≥ OPT.}

Therefore, either $\sum_{k=1}^{i-1} b_k \geq \frac{1}{2} \text{OPT}$ or $b_i \geq \frac{W_{\text{rest}}}{w_i}$ $\frac{U_{\rm rest}}{W_{\rm i}}$ b_i $\geq \frac{1}{2} \rm{OPT}$

Contents

Knapsack Problem

Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack

Discussion

Ξ

÷,

 $\overline{}$

Dynamic Programming

- \blacktriangleright We can do better with an algorithm based on dynamic programming.
- \blacktriangleright We need to carefully identify the subproblems.

ä,

 \overline{a}

Dynamic Programming

Defining a Subproblem

- \blacktriangleright Given a knapsack with maximum capacity W, and a set S consisting of n items
- \triangleright Each item i has some weight w_i and benefit b_i (Here, we can assume all wⁱ and W are integer values.)
- \blacktriangleright Problem: How to pack the knapsack to achieve maximum total value of packed items?
- ▶ Let's add another parameter: w, which will represent the weight of the knapsack for a subproblem.

Dynamic Programming

Defining a Subproblem

- \blacktriangleright The subproblem will then be to compute V[k,w], i.e., to find an optimal solution for $S_k =$ items labeled1,2,..k in a knapsack of size w
- ▶ Assuming knowing V[i*,*j], where i = 0*,*1*,*2*,...,*k*−*1, $j = 0, 1, 2, \ldots, w$, how to derive $V[k, w]$?

 $rac{1}{2}$

Dynamic Programming

Recursive Formula for subproblems:

$$
V[k,w]=\begin{cases}V[k-1,w] & \text{if $w_k>w$}\\ \max\{V[k-1,w],V[k-1.w-w_k]+b_k\} & \text{else}\end{cases}
$$

It means, that the best subset of $\mathbf{S}_{\mathbf{k}}$ that has total weight \mathbf{w} is:

- ▶ the best subset of Sk*−*¹ that has total weight *≤* w, or
- ▶ the best subset of Sk*−*¹ that has total weight*≤* w*−*w^k plus the item k

 $rac{1}{2}$

Dynamic Programming

DP for knapsack() 1: for $\mathbf{w} = \mathbf{0}$ to \mathbf{W} do 2: $V[0,w]=0$ 3: for $i = 1$ to $\mathbf n$ do 4: $V[i,0]=0$ 5: for $i = 1$ to n do 6: for $w = 0$ to W do 7: if $w_i \leq W$ then 8: if $b_i + V[i-1, w - w_i] > V[i-1, w]$ then 9: V[i*,*w] = bⁱ +V[i*−*1*,*w*−*wⁱ] 10: else 11: V[i*,*w] = V[i*−*1*,*w] Ξ Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 20 / 54

Dynamic Programming

 \triangleright What is the running time of this algorithm? $O(nW)$

 \blacktriangleright Let's run our algorithm on the following data: $n = 4$ (number of items) $W = 5$ (weight bound) Elements (weight, benefit): $(2,3), (3,4), (4,5), (5,6)$

 $2QQ$

Dynamic Programming Example

Dynamic Programming Example

Dynamic Programming Example

 $\left(\frac{1}{2} \right)$

 OQ

Dynamic Programming Example

 $\overline{\Theta}$)

 $\begin{array}{ccccccccc} \ast & \Xi & \ast & \ast & \Xi \end{array}$

.
Contr

 OQ

Dynamic Programming Example

 Θ

 $\epsilon \equiv \epsilon \rightarrow$ \equiv

 \Box

Dynamic Programming Example

 $E = 990$

Dynamic Programming Example

 \equiv OQ

 $(12.2, 12.3, 12.$

Dynamic Programming Example

 $\left(\frac{1}{2} \right)$

 OQ

Dynamic Programming Example

Dynamic Programming Example

KORKØRKERKER E DAG

Dynamic Programming Example

 $\overline{4}$

 $\lambda \geq 0$, $\lambda \geq$

 \leftarrow

 -990

Dynamic Programming Example

 $\left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2}\right)$

 $\left(\frac{1}{2} \right)$

 -990

Dynamic Programming Example

i o k

 OQ

 $\epsilon \geq \epsilon + 2$

Dynamic Programming Example

 \overline{AB}) \overline{AB}) \overline{AB})

 $\left(\frac{1}{2} \right)$

 E Ω

Dynamic Programming Example

 (5) (3)

.
Contr

Dynamic Programming Example

 $\alpha \geq 0$, $\alpha \geq 0$

 \leftarrow

 OQ

Dynamic Programming Example

 (5) (3)

 \leftarrow

 $E = \Omega Q Q$

Dynamic Programming

How to find actual Knapsack Items

- \triangleright All of the information we need is in the table.
- ▶ V[n, W] is the maximal value of items that can be placed in the Knapsack.
- \blacktriangleright Let $i = n$ and $k = W$.

find actual knapsacks items()

- 1: if $i = n$ and $k = W$ then
- 2: mark the i-th item as in the knapsack
- 3: i = i*−*1,k = k*−*wⁱ
- 4: else
- 5: i = i*−*1

 \overline{a}

Dynamic Programming Example

 $\mathcal{O} \cap \mathcal{O}$

Dynamic Programming Example

 $\left\langle \begin{array}{c} \end{array} \right\rangle$

 θ

 2990

 \equiv

Dynamic Programming Example

Dynamic Programming Example

 $\bar{\Xi}$ OQ

 $(\Box \rightarrow A \overline{B} \rightarrow A \overline{B} \rightarrow A \overline{B} \rightarrow$

Dynamic Programming Example

E DQQ

 $\begin{array}{cccccccccccccc} \left\langle \left(\begin{array}{ccc} \square & \triangleright & \left\langle \left(\begin{array}{ccc} \square & \triangleright & \left\langle \right(\begin{array}{ccc} \square & \triangleright & \left\langle \right(\begin{array}{ccc} \square & \triangleright & \left\langle \right(\begin{array}{ccc} \square & \right)\end{array} \right\rangle \end{array}\right) \end{array}\right. \end{array} \end{array}$

Dynamic Programming Example

Dynamic Programming Example

Contents

Knapsack Problem

Greedy Algorithm for Knapsack

Dynamic Programming Approach for Knapsack

Discussion

 \equiv

ä,

 \Box

 θ

 \equiv Q

Discussion : Pseudo-polynomial

Pseudo-polynomial time:

a numeric algorithm runs in pseudo-polynomial time if its running time is a polynomial in the numeric value of the input — but not necessarily in the length of the input (the number of bits required to represent it)

- ▶ The Running time of dynamic programming algorithm on 0-1 Knapsack problem is O(W*∗*n), the number W needs logW bits to describe, so it is pseudo-polynomial.
- ▶ Other pseudo-polynomial algorithm: Primality testing

Discussion: Another DP apprach, Pseudo-polynomial

- \blacktriangleright Let P be the profit of the most profitable object, i.e. $P = max_{a \in S} p(a)$. From this, we can upper bound the profit that can be achieved as nP for the n objects. Here, we can assume the benefit of each item are interger values.
- ▶ For each i *∈ {*1*,...,*n*}* and p *∈ {*1*,...,*nP*}*, let Si*,*^p denote a subset of *{*a1*,...,*ai*}* that has a total profit of exactly p and takes up the least amount of sapce possible.
- ► Let $A(i, p)$ be the size of the set $S_{i, p}$, with a value of ∞ to denote no such subset.
- \triangleright For A(i, p), we have the base case A(1, p) where A(1, p(a₁)) is s(a₁) and all other values are ∞ .

Discussion: Another DP apprach, Pseudo-polynomial

 \blacktriangleright We can use the following recurrence to caculate all values for A(i*,*p):

$$
A(i+1, p) = \begin{cases} \min\{A(i, p), s(a_{i+1}) + A(i, p - p(a_{i+1}))\}, & \text{if } p(a_{i+1}) \le p \\ A(i, p), & \text{otherwise} \end{cases}
$$

- \triangleright The optimal subset then corresponds with the set $S_{n,p}$ for which p is maximized and $A(n, p) \leq B$. Since this iterates through at most n different values to caculate each A(i*,*p) we get a total running time of $O(n^2P)$ and thus a pseudo-polynomial algorithm for knapsack.
- \triangleright It is easy to modify the above DP algorithm to achieve a full polynomial-time approximation scheme (FPTAS) for 0-1 knapsack.

 OQ

Another Dynamic Programming for Knapsack

DP for knapsack()

- 1: Let P be the maximum benefit of all items.
- 2: Given $\mathcal{E} > 0$, let $K = \frac{\varepsilon \cdot P}{n}$.
- $3:$ for each object \mathbf{a}_i do
- 4: define a new profit $p'(a_i) = \lfloor \frac{p(a_i)}{K} \rfloor$ $\frac{(a_i)}{K}$.
- 5: With these as profits of n items, using the dynamic programming algorithm presented in previous slide, find the most profitable set, say S*′* .
- 6: Output S*′* as the final solution for the original knapsack problem

Another Dynamic Programming for Knapsack

Theorem

The set S', output by the aforementioned algorithm, satisfies that

 $P(S') \geq (1 - \varepsilon) \cdot OPT$.

Here $P(S')$ denotes the profit (or benefit) from the set S', and OPT is the optimum benefit of the original problem.

 $rac{1}{2}$

Another Dynamic Programming for Knapsack

Proof.

Let O be the optimal set for the original problem, and let $P'(X)$ be the modified profit of set X with profit function p*′* (). Clearly,

$$
p(a)-K\leq K\cdot p'(a)\leq p(a);
$$

$$
P(O)-K\cdot P'(O)\leq n\cdot K.
$$

Then we have

$$
P(S') \geq K \cdot P'(S') \geq K \cdot P'(O) \geq P(O) - nK = OPT - \varepsilon \cdot P \geq (1 - \varepsilon) OPT
$$

This finishes the proof.

 \Box

 \overline{a}

Ξ

 $E = 990$

Discussions: Variations of Knapsack Problem

There are many variations of the knapsack problem that have arisen from the vast number of applications of the basic problem.

- \blacktriangleright Basic knapsack: n items, each with benefit b_i and weight wi , and a knapsack with weight bound W.
- \triangleright Unbounded knapsack problem: For each item a_i , it can be selected unlimited times, i.e., we do not put any upper bounds on the number of times an item may be selected.
- \triangleright Bounded knapsack problem: For each item a_i , it can only be selected by at most k_i times in the final solution, i.e., there is an upper bound that an item may be selected.
- ▶ Multidimensional knapsack problem There are more than one constraints (for example, both a volume limit and a weight limit). This problem has 0-1, bounded, and

Exampled etc. variants.
Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 54/54