
Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Introduction to Algorithms
Chapter 23 : Minimum Spanning Trees

Xiang-Yang Li and Haisheng Tan

School of Computer Science and Technology
University of Science and Technology of China (USTC)

Fall Semester 2024

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 1 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Outline of Topics

23.1 Growing a minimum spanning tree
Greedy Method for MST
Recognize safe edges

23.2 The algorithms of Kruskal and Prim
Kruskal’s algorithm
Prim’s algorithm

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 2 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Basic definitions and properties

In this chapter, we shall examine two algorithms for solving the
minimum spanning-tree problem: Kruskal’s algorithm and Prim’s
algorithm.
▶ Section 23.1 introduces a “generic” minimum-spanning-tree

method that grows a spanning tree by adding one edge at a time.
▶ Section 23.2 gives two algorithms that implement the generic

method.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 3 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Basic definitions and properties

Definition 1:
Given a connected, undirected graph G = (V,E) , for each edge

(u,v) ∈ E, having a weight w(u,v) .
We wish to find an acyclic subset T ⊆ E that connects all of the

vertices and whose total weight is minimized.

w(T) = ∑
(u,v)∈T

w(u,v)

Since T is acyclic and connects all of the vertices, it must form a
tree, which we call a spanning tree since it “spans” the graph G. We
call the problem of determining the tree T the minimum-spanning-tree
problem(MST).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 4 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Example of a connected graph and MST

b d

e

h f

c

ia

g

4

8

11

8

1 2

6

2
7

4

10

9
14

7

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 5 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Greedy Method for MST
Recognize safe edges

Greedy Method for MST

The two algorithms (Kruskal’s Algorithm and Prim’s Algorithm)
we consider in this chapter run in time O(|E|log|V|) using a greedy
approach to the problem.
Greedy strategy:

Grows the minimum spanning tree one edge at a time and
manages a set of edges A, maintaining the following loop invariant:

Prior to each iteration, A is a subset of some minimum
spanning tree.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 6 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Greedy Method for MST
Recognize safe edges

Generic MST Algorithm

At each step we determine an edge (u,v) such that A∪ (u,v) is
still a subset of a MST and (u,v) is called a safe edge for A.
GENERIC-MST(G,w)
1: A = /0
2: while A does not form a spanning tree do
3: find an edge (u,v) that is safe for A
4: A = A∪ (u,v)
5: return A

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 7 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Greedy Method for MST
Recognize safe edges

Cut and Light Edge

Definition 2:
▶ A cut (S,V −S) of an undirected graph G = (V,E) is a partition

of V .
▶ An edge (u,v) ∈ E crosses the cut iff one of its endpoints is in S

and the other is in V −S
▶ An edge is a light edge crossing a cut if its weight is the

minimum of any edge crossing the cut
▶ We call a cut respects a set A of edges if no edge in A crosses

the cut.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 8 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Greedy Method for MST
Recognize safe edges

Example of Cut and Light Edge

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 9 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Greedy Method for MST
Recognize safe edges

Recognize safe edges

Theorem 23.1:
Let G = (V,E) be a connected, undirected graph with a

real-valued weight function w defined on E. Let A be a subset of E
that is included in some minimum spanning tree for G, let (S,V −S)
be any cut of G that respects A, and let (u,v) be a light edge crossing
(S,V −S).

Then, edge (u,v) is safe for A.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 10 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Greedy Method for MST
Recognize safe edges

Recognize safe edges

x

u
y

v

p

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 11 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Greedy Method for MST
Recognize safe edges

Recognize safe edges

Proof:
Suppose that T is an MST containing A but not the light edge

(u,v), then there is at least one edge on the path p that crosses the cut,
say(x,y).
1.form a new spanning tree T ′:

Then (x,y) is not in A. Because p is the unique path from u to v
in T , so removing (x,y) breaks T into two components. Adding (u,v)
reconnects them to form a new spanning tree
T ′ = (T −{(x,y)})∪{(u,v)}.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 12 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Greedy Method for MST
Recognize safe edges

Recognize safe edges

2. show that T ′ is MST:
Since (u,v) is a light edge crossing (S,V −S) and (x,y) also

crosses this cut,w(u,v)≤ w(x,y). Therefore,

w
(
T ′)= w(T)−w(x,y)+w(u,v)

≤ w(T)

But T is a minimum spanning tree, so that w(T)≤ w(T ′).thus T ′

must be a minimum spanning tree also.
3. show that (u,v) is a safe edge for A:

We have A ⊆ T ′, since A ⊆ T and (x,y) /∈ A,thus
A∪{(u,v)} ⊆ T ′. Since T ′ is a MST, (u,v) is safe for A.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 13 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Greedy Method for MST
Recognize safe edges

Corollary to Theorem 23.1

Corollary to theorem 23.1:
Let G = (V,E) be a connected, undirected graph with a

real-valued weight function w defined on E. Let A be a subset of E
that is included in some minimum spanning tree for G, and let
C = (Vc,Ec) be a connected component (tree) in the forest
GA = (V,A).

If (u,v) is a light edge connecting C to some other component in
GA, then (u,v) is safe for A.
Proof:

Since the cut (Vc,V −Vc) respects A, and (u,v) is a light edge
for this cut, (u,v) is safe for A.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 14 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Kruskal and Prim Algorithms

▶ In Kruskal’s algorithm, the set A forms a forest. The safe edge
added to A is always a least-weight edge in the graph that
connects two distinct components

▶ In Prim’s algorithm, the set A forms a single tree. The safe edge
added to A is always a least-weight edge connecting the tree to a
vertex not in the tree.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 15 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Kruskal’s algorithm

Kruskal’s algorithm finds a safe edge to add to the growing
forest by finding, of all the edges that connect any two trees in the
forest, an edge (u,v) of the least weight.

Let C1 and C2 denote the two trees that are connected by (u,v).
Since (u,v) is a light edge, connecting C1 to some other tree, (u,v) is
a safe edge for C1.(Corollary 23.2)

Simply speaking, at each step Kruskal’s algorithm adds to the
forest an edge of the least possible weight (greedy).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 16 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Kruskal’s algorithm

MST-KRUSKAL(G,w)
1: A = /0
2: for each vertex v ∈ G.V do
3: MAKE-SET(v)
4: sort the edges of G.E into nondecreasing order by weight w
5: for each edge (u,v) ∈ G.E, taking in nondecreasing order by

weight w, do
6: if FIND-SET(u) ̸= FIND-SET(v) then
7: A = A∪{(u,v)}
8: UNION(u,v)
9: return A

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 17 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Kruskal’s algorithm

b d

e

h f

c

ia

g

4

8

11

8

1 2

6

2
7

4

10

9
14

7

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 18 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Kruskal’s algorithm

b d

e

h f

c

ia

g

4

8

11

8

1 2

6

2
7

4

10

9
14

7

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 19 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Kruskal’s algorithm

b d

e

h f

c

ia

g

4

8

11

8

1 2

6

2
7

4

10

9
14

7

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 20 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Kruskal’s algorithm

b d

e

h f

c

ia

g

4

8

11

8

1 2

6

2
7

4

10

9
14

7

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 21 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Kruskal’s algorithm

b d

e

h f

c

ia

g

4

8

11

8

1 2

6

2
7

4

10

9
14

7

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 22 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Kruskal’s algorithm

b d

e

h f

c

ia

g

4

8

11

8

1 2

6

2
7

4

10

9
14

7

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 23 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Kruskal’s algorithm

b d

e

h f

c

ia

g

4

8

11

8

1 2

6

2
7

4

10

9
14

7

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 24 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Kruskal’s algorithm

b d

e

h f

c

ia

g

4

8

11

8

1 2

6

2
7

4

10

9
14

7

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 25 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Kruskal’s algorithm

b d

e

h f

c

ia

g

4

8

11

8

1 2

6

2
7

4

10

9
14

7

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 26 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Kruskal’s algorithm

b d

e

h f

c

ia

g

4

8

11

8

1 2

6

2
7

4

10

9
14

7

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 27 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Kruskal’s algorithm

b d

e

h f

c

ia

g

4

8

11

8

1 2

6

2
7

4

10

9
14

7

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 28 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Kruskal’s algorithm

b d

e

h f

c

ia

g

4

8

11

8

1 2

6

2
7

4

10

9
14

7

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 29 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Kruskal’s algorithm

b d

e

h f

c

ia

g

4

8

11

8

1 2

6

2
7

4

10

9
14

7

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 30 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Kruskal’s algorithm

b d

e

h f

c

ia

g

4

8

11

8

1 2

6

2
7

4

10

9
14

7

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 31 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Kruskal’s algorithm

b d

e

h f

c

ia

g

4

8

11

8

1 2

6

2
7

4

10

9
14

7

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 32 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Kruskal’s algorithm

MST-KRUSKAL(G,w)
1: A = /0
2: for each vertex v ∈ G.V do
3: MAKE-SET(v) // O(V) MAKE-SET
4: sort the edges of G.E into nondecreasing order by weight w //

O(E logE)
5: for each edge (u,v) ∈ G.E, taking in nondecreasing order by

weight w, do
6: if FIND-SET(u) ̸= FIND-SET(v) then
7: A = A∪{(u,v)}
8: UNION(u,v) //totally O(E) FIND-SET and UNION
9: return A

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 33 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Kruskal’s Algorithm Complexity

Complexity:
Assume that we use the disjoint-set-forest implementation with

the union-by-rank and path-compression heuristics
Initializing the set A in line 1 takesO(1) time
Sort the edges in line 4 is O(E lgE) time
The for loop of lines 5-–8 performs O(E) FIND-SET and

UNION operations on the disjoint-set forest
Along with the |V| MAKE-SET operations, these take a total of

O((V +E)α(V)) time
Since α(|V|) = O(lgV) = O(lgE), the running time is O(E lgE)
Since |E| ≤ |V|2, lg |E|= O(lgV) , the running time is O(E lgV)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 34 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Prim’s algorithm

Prim’s algorithm operates much like Dijkstra’s algorithm for
finding shortest paths in a graph.

Prim’s algorithm has the property that the edges in the set A
always form a single tree.

Each step adds to the tree A a light edge that connects A to an
isolated vertex – one on which no edge of A is incident.

Simply speaking, at each step it adds to the tree an edge that
contributes the minimum amount possible to the tree’s weight
(greedy).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 35 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Prim’s algorithm

MST-PRIM(G,w,r)
1: for each vertex u ∈ G.V do
2: u.key=∞; //u.key stores the minimum weight of any edge

connecting u to a vertex in the current tree
3: u.π = NIL
4: r.key = 0
5: Q = G.V // Q contains nodes not yet joining the tree
6: while Q ̸= /0 do
7: u = EXTRACT-MIN(Q) //adding (u.π,u) to the tree
8: for each v ∈ G.Adj[u] do
9: if v ∈ Q and w(u,v)< v.key then //updating keys

10: v.π = u
11: v.key = w(u,v)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 36 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Prim’s algorithm

a

b c d

h

i

g f

e

4

8

8 7

11

7

1 2

6

2

4
14

9

10

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 37 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Prim’s algorithm

a

b c d

h

i

g f

e

4

8

8 7

11

7

1 2

6

2

4
14

9

10

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 38 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Prim’salgorithm

a

b c d

h

i

g f

e

4

8

8 7

11

7

1 2

6

2

4
14

9

10

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 39 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Prim’s algorithm

a

b c d

h

i

g f

e

4

8

8 7

11

7

1 2

6

2

4
14

9

10

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 40 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Prim’s algorithm

a

b c d

h

i

g f

e

4

8

8 7

11

7

1 2

6

2

4
14

9

10

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 41 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Prim’s algorithm

a

b c d

h

i

g f

e

4

8

8 7

11

7

1 2

6

2

4
14

9

10

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 42 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Prim’s algorithm

a

b c d

h

i

g f

e

4

8

8 7

11

7

1 2

6

2

4
14

9

10

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 43 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Prim’s algorithm

a

b c d

h

i

g f

e

4

8

8 7

11

7

1 2

6

2

4
14

9

10

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 44 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Prim’s algorithm

a

b c d

h

i

g f

e

4

8

8 7

11

7

1 2

6

2

4
14

9

10

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 45 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Prim’s algorithm

MST-PRIM(G,w,r)
1: for each vertex u ∈ G.V do
2: u.key = ∞

3: u.π = NIL
4: r.key = 0
5: Q = G.V //BUILD-MIN-HEAP, O(V)
6: while Q ̸= /0 do //V loops
7: u = EXTRACT-MIN(Q) //O(logV) for each loop
8: for each v ∈ G.Adj[u] do // //2E loops totally
9: if v ∈ Q and w(u,v)< v.key then

10: v.π = u
11: v.key = w(u,v) //DECREASE-KEY

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 46 / 47

Outline
23.1 Growing a minimum spanning tree

23.2 The algorithms of Kruskal and Prim

Kruskal’s algorithm
Prim’s algorithm

Prim’s algorithm Complexity

Complexity:
Implement the min-priority queue Q as a binary min-heap:

Lines 1 - 5 : use the BUILD-MIN-HEAP to perform O(V)
The body of the while loop executes |V| times, since each

EXTRACT-MIN operation takes O(lgV) time, the total time if
O(VlgV) time. The for loop in lines 8 - 11 executes O(E) times
altogether, since the sum of the lengths of all adjacency lists is 2|E|.

Line 11 involves an implicit DECREASE-KEY operation on the
min-heap, which a binary min-heap supports in O(lgV) time.
Total time: O(V lgV +E lgV) = O(E lgV)
What about implementing the min-priority queue Q as a FIB-Heap?

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 47 / 47

	Outline
	23.1 Growing a minimum spanning tree
	Greedy Method for MST
	Recognize safe edges

	23.2 The algorithms of Kruskal and Prim
	Kruskal’s algorithm
	Prim’s algorithm

