#### Introduction to Algorithms Chapter 23 : Minimum Spanning Trees

#### Xiang-Yang Li and Haisheng Tan

School of Computer Science and Technology University of Science and Technology of China (USTC)

Fall Semester 2024

1/47

E SQA

4 🗆 K 4 🗇 K 4 🖻 K 4 🖻 K 👘

23.1 Growing a minimum spanning tree 23.2 The algorithms of Kruskal and Prim

## **Outline of Topics**

#### 23.1 Growing a minimum spanning tree Greedy Method for MST Recognize safe edges

23.2 The algorithms of Kruskal and Prim Kruskal's algorithm Prim's algorithm

E 920

23.1 Growing a minimum spanning tree 23.2 The algorithms of Kruskal and Prim

# Basic definitions and properties

In this chapter, we shall examine two algorithms for solving the minimum spanning-tree problem: Kruskal's algorithm and Prim's algorithm.

- Section 23.1 introduces a "generic" minimum-spanning-tree method that grows a spanning tree by adding one edge at a time.
- Section 23.2 gives two algorithms that implement the generic method.

23.1 Growing a minimum spanning tree 23.2 The algorithms of Kruskal and Prim

# Basic definitions and properties

#### **Definition 1:**

Given a connected, undirected graph G = (V, E), for each edge  $(u, v) \in E$ , having a weight w(u, v).

We wish to find an acyclic subset  $T \subseteq E$  that connects all of the vertices and whose total weight is minimized.

$$w(T) = \sum_{(u,v)\in T} w(u,v)$$

Since T is acyclic and connects all of the vertices, it must form a tree, which we call a spanning tree since it "spans" the graph G. We call the problem of determining the tree T the minimum-spanning-tree problem(MST).

(日)(周)(注)(注)(注) (三) (の)()

23.1 Growing a minimum spanning tree 23.2 The algorithms of Kruskal and Prim

#### Example of a connected graph and MST



5/47

Greedy Method for MST Recognize safe edges

## Greedy Method for MST

The two algorithms (Kruskal's Algorithm and Prim's Algorithm) we consider in this chapter run in time O(|E|log|V|) using **a greedy approach** to the problem.

#### **Greedy strategy:**

Grows the minimum spanning tree one edge at a time and manages a set of edges A, maintaining the following loop invariant: **Prior to each iteration, A is a subset of some minimum spanning tree.** 

Greedy Method for MST Recognize safe edges

### Generic MST Algorithm

At each step we determine an edge (u, v) such that  $A \cup (u, v)$  is still a subset of a MST and (u, v) is called a **safe edge** for A.

#### GENERIC-MST(G, w)

- 1:  $A = \emptyset$
- 2: while A does not form a spanning tree do
- 3: find an edge (u, v) that is safe for A
- 4:  $A = A \cup (u, v)$
- 5: return A

Greedy Method for MST Recognize safe edges

# Cut and Light Edge

#### **Definition 2:**

- A cut (S, V S) of an undirected graph G = (V, E) is a partition of V.
- An edge (u, v) ∈ E crosses the cut iff one of its endpoints is in S and the other is in V − S
- An edge is a light edge crossing a cut if its weight is the minimum of any edge crossing the cut
- We call a cut respects a set A of edges if no edge in A crosses the cut.

Greedy Method for MST Recognize safe edges

# Example of Cut and Light Edge



9/47

・ロト・日本・ヨト・ヨー・ のへの

Greedy Method for MST Recognize safe edges

## Recognize safe edges

#### Theorem 23.1:

Let G = (V, E) be a connected, undirected graph with a real-valued weight function w defined on E. Let A be a subset of E that is included in some minimum spanning tree for G, let (S, V - S) be any cut of G that respects A, and let (u, v) be a light edge crossing (S, V - S).

Then, edge (u, v) is safe for A.

Greedy Method for MST Recognize safe edges

# Recognize safe edges



Greedy Method for MST Recognize safe edges

# Recognize safe edges

#### **Proof:**

Suppose that *T* is an MST containing *A* but not the light edge (u, v), then there is at least one edge on the path *p* that crosses the cut, say(x, y).

#### **1.form a new spanning tree** *T*':

Then (x, y) is not in *A*. Because *p* is the unique path from *u* to *v* in *T*, so removing (x, y) breaks *T* into two components. Adding (u, v) reconnects them to form a new spanning tree  $T' = (T - \{(x, y)\}) \cup \{(u, v)\}.$ 

Greedy Method for MST Recognize safe edges

# Recognize safe edges

#### **2.** show that T' is MST:

Since (u, v) is a light edge crossing (S, V - S) and (x, y) also crosses this cut, $w(u, v) \le w(x, y)$ . Therefore,

$$w(T') = w(T) - w(x, y) + w(u, v)$$
  
$$\leq w(T)$$

But *T* is a minimum spanning tree, so that  $w(T) \le w(T')$ .thus *T'* must be a minimum spanning tree also.

**3.** show that (u, v) is a safe edge for A:

We have  $A \subseteq T'$ , since  $A \subseteq T$  and  $(x, y) \notin A$ , thus  $A \cup \{(u, v)\} \subseteq T'$ . Since T' is a MST, (u, v) is safe for A.

Greedy Method for MST Recognize safe edges

### Corollary to Theorem 23.1

#### **Corollary to theorem 23.1:**

Let G = (V, E) be a connected, undirected graph with a real-valued weight function *w* defined on *E*. Let *A* be a subset of *E* that is included in some minimum spanning tree for *G*, and let  $C = (V_c, E_c)$  be a connected component (tree) in the forest  $G_A = (V, A)$ .

If (u, v) is a light edge connecting *C* to some other component in  $G_A$ , then (u, v) is safe for *A*.

#### **Proof:**

Since the cut  $(V_c, V - V_c)$  respects A, and (u, v) is a light edge for this cut, (u, v) is safe for A.

Kruskal's algorithm Prim's algorithm

### Kruskal and Prim Algorithms

- In Kruskal's algorithm, the set A forms a forest. The safe edge added to A is always a least-weight edge in the graph that connects two distinct components
- In Prim's algorithm, the set A forms a single tree. The safe edge added to A is always a least-weight edge connecting the tree to a vertex not in the tree.

15/47

Kruskal's algorithm Prim's algorithm

# Kruskal's algorithm

**Kruskal's algorithm** finds a safe edge to add to the growing forest by finding, of all the edges that connect any two trees in the forest, an edge (u, v) of **the least weight**.

Let  $C_1$  and  $C_2$  denote the two trees that are connected by (u, v). Since (u, v) is a light edge, connecting  $C_1$  to some other tree, (u, v) is a safe edge for  $C_1$ .(Corollary 23.2)

Simply speaking, at each step Kruskal's algorithm adds to the forest an edge of the least possible weight (greedy).

Kruskal's algorithm Prim's algorithm

# Kruskal's algorithm

#### MST-KRUSKAL(G,w)

- 1:  $A = \emptyset$
- 2: for each vertex  $v \in G.V$  do
- 3: MAKE-SET(v)
- 4: sort the edges of G.E into nondecreasing order by weight w
- 5: for each edge  $(u, v) \in G.E$ , taking in nondecreasing order by weight w, do
- 6: **if** FIND-SET(u)  $\neq$  FIND-SET(v) **then**
- $7: \qquad A = A \cup \{(u, v)\}$
- 8: UNION(u, v)

9: **return** *A* 

Kruskal's algorithm Prim's algorithm

### Kruskal's algorithm



18/47

Kruskal's algorithm Prim's algorithm

### Kruskal's algorithm



19/47

Kruskal's algorithm Prim's algorithm

### Kruskal's algorithm



Kruskal's algorithm Prim's algorithm

### Kruskal's algorithm



7

Kruskal's algorithm Prim's algorithm

### Kruskal's algorithm



22/47

Kruskal's algorithm Prim's algorithm

### Kruskal's algorithm



23/47

Kruskal's algorithm Prim's algorithm

### Kruskal's algorithm



ヘロマスピッスロン 聞いてん

Kruskal's algorithm Prim's algorithm

### Kruskal's algorithm



Kruskal's algorithm Prim's algorithm

### Kruskal's algorithm



(ロ)(周)(注)(注) 注) き のへの

Kruskal's algorithm Prim's algorithm

### Kruskal's algorithm



27/47

・ロト・日下・日下・日下・日下

Kruskal's algorithm Prim's algorithm

### Kruskal's algorithm



Kruskal's algorithm Prim's algorithm

### Kruskal's algorithm



くしゃく聞きくせき ほうめんの

Kruskal's algorithm Prim's algorithm

### Kruskal's algorithm



30/47

Kruskal's algorithm Prim's algorithm

### Kruskal's algorithm



31/47

Kruskal's algorithm Prim's algorithm

### Kruskal's algorithm



(ロト (個) (注) (注) (注) (注) (注)

Kruskal's algorithm Prim's algorithm

# Kruskal's algorithm

MST-KRUSKAL(G,w)

- 1:  $A = \emptyset$
- 2: for each vertex  $v \in G.V$  do
- 3: MAKE-SET(v) // O(V) MAKE-SET
- 4: sort the edges of *G.E* into nondecreasing order by weight *w* // *O*(*E*log*E*)
- 5: for each edge  $(u, v) \in G.E$ , taking in nondecreasing order by weight w, do
- 6: **if** FIND-SET(u)  $\neq$  FIND-SET(v) **then**
- $7: \qquad A = A \cup \{(u, v)\}$
- 8: UNION(u, v) //totally O(E) FIND-SET and UNION
- 9: **return** *A*

(ロ)(同)(言)(言)(言) (言) の(の

Kruskal's algorithm Prim's algorithm

# Kruskal's Algorithm Complexity

#### **Complexity:**

Assume that we use the disjoint-set-forest implementation with the union-by-rank and path-compression heuristics

Initializing the set A in line 1 takes O(1) time

Sort the edges in line 4 is  $O(E \lg E)$  time

The for loop of lines 5--8 performs O(E) FIND-SET and

UNION operations on the disjoint-set forest

Along with the |V| MAKE-SET operations, these take a total of  $O((V+E)\alpha(V))$  time

Since  $\alpha(|V|) = O(\lg V) = O(\lg E)$ , the running time is  $O(E\lg E)$ Since  $|E| \le |V|^2$ ,  $\lg |E| = O(\lg V)$ , the running time is  $O(E\lg V)$ 

Kruskal's algorithm Prim's algorithm

# Prim's algorithm

**Prim's algorithm** operates much like Dijkstra's algorithm for finding shortest paths in a graph.

Prim's algorithm has the property that the edges in the set A always form a single tree.

Each step adds to the tree A a light edge that connects A to an isolated vertex – one on which no edge of A is incident.

Simply speaking, at each step it adds to the tree an edge that contributes the minimum amount possible to the tree's weight (greedy).

Kruskal's algorithm Prim's algorithm

# Prim's algorithm

MST-PRIM(G, w, r)1: for each vertex  $u \in G.V$  do  $u.key = \infty;$  //u.key stores the minimum weight of any edge 2: connecting *u* to a vertex in the current tree 3.  $u \pi = NIL$ 4: r.kev = 05: Q = G.V // Q contains nodes not yet joining the tree 6: while  $Q \neq \emptyset$  do 7: u = EXTRACT-MIN(Q) //adding  $(u, \pi, u)$  to the tree for each  $v \in G.Adj[u]$  do 8: if  $v \in Q$  and w(u, v) < v.key then //updating keys 9: 10:  $v.\pi = u$ v.key = w(u, v)11: Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 36/47

Kruskal's algorithm Prim's algorithm

# Prim's algorithm



(日)(聞)(甘)(甘) 一世 のへの

Kruskal's algorithm Prim's algorithm

# Prim's algorithm



Kruskal's algorithm Prim's algorithm

## Prim'salgorithm



Kruskal's algorithm Prim's algorithm

# Prim's algorithm



40/47

Kruskal's algorithm Prim's algorithm

# Prim's algorithm



・ロト・個ト・目と・目と、・ロト・個ト・目と、

Kruskal's algorithm Prim's algorithm

# Prim's algorithm



42/47

Kruskal's algorithm Prim's algorithm

# Prim's algorithm



43/47

Kruskal's algorithm Prim's algorithm

# Prim's algorithm



44/47

Kruskal's algorithm Prim's algorithm

# Prim's algorithm



・ロト・4回ト・4回ト・4回ト・4回ト

Kruskal's algorithm Prim's algorithm

# Prim's algorithm

| M   | MST-PRIM(G, w, r)                              |                                            |
|-----|------------------------------------------------|--------------------------------------------|
| 1:  | : for each vertex $u \in G.V$ do               |                                            |
| 2:  | $2: \qquad u.key = \infty$                     |                                            |
| 3:  | $u.\pi = NIL$                                  |                                            |
| 4:  | 4: $r.key = 0$                                 |                                            |
| 5:  | 5: $Q = G.V$ //BUILD-MIN-HEAP, $O(V)$          |                                            |
| 6:  | 5: while $Q \neq \emptyset$ do //V loops       |                                            |
| 7:  | $u = \text{EXTRACT-MIN}(Q) \qquad //O(\log V)$ | /) for each loop                           |
| 8:  | S: for each $v \in G.Adj[u]$ do // //2E loo    | ps totally                                 |
| 9:  | if $v \in Q$ and $w(u, v) < v$ .key then       |                                            |
| 10: | $v.\pi = u$                                    |                                            |
| 11: | v.key = w(u, v) //DECREA                       | SE-KEY                                     |
|     |                                                | (D) < () > () < () < () < () < () < () < ( |

Kruskal's algorithm Prim's algorithm

# Prim's algorithm Complexity

#### **Complexity:**

#### Implement the min-priority queue Q as a binary min-heap:

Lines 1 - 5 : use the BUILD-MIN-HEAP to perform O(V)The body of the while loop executes |V| times, since each

EXTRACT-MIN operation takes  $O(\lg V)$  time, the total time if O(VlgV) time. The for loop in lines 8 - 11 executes O(E) times altogether, since the sum of the lengths of all adjacency lists is 2|E|.

Line 11 involves an implicit DECREASE-KEY operation on the min-heap, which a binary min-heap supports in  $O(\lg V)$  time. Total time:  $O(V \lg V + E \lg V) = O(E \lg V)$ What about implementing the min-priority queue Q as a FIB-Heap?