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Shortest-paths Problem

shortest-paths problem

In a shortest-paths problem, we are given a weighted, directed graph
G = (V,E), with weight function w : E — R mapping edges to
real-valued weights.

The weight w(p) of path p = (v, v,..., V) is the sum of the weights
of its constituent edges:

k
w(p) = ; w(vi_1,vi).

We define the shortest-path weight & (u,v) from u to v by

o) = min{w(p) : u > v} if there is a path from u to v,
’ oo otherwise.

A shortest path from vertex u to vertex v is then defined as any path
p with weight w(p) = 6(u,v).
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Shortest-paths Problem

Variants

In this chapter, we shall focus on the single-source shortest-paths
problem: given a graph G = (V,E), we want to find a shortest path
from a given source vertex s € V to each vertex v € V. The algorithm
for the single-source problem can solve many other problems,
including the following variants:

» Single-destination shortest-paths problem: Find a shortest
path to a given destination vertex ¢ from each vertex v.

» Single-pair shortest-path problem: Find a shortest path from u
to v for given vertices u and v.

> All-pairs shortest-paths problem: Find a shortest path from u
to v for every pair of vertices u and v. Although we can solve this
problem by running a single-source algorithm once from each
vertex, we usually can solve it faster.
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Shortest-paths Problem

Optimal substructure of a shortest path

Lemma 24.1 (Subpaths of shortest paths are shortest paths)

Given a weighted, directed graph G = (V, E) with weight function
w:E— TR, letp = (vp,vi,...,v) be a shortest path from vertex vy to
vertex v and, for any i and j such that 0 <i <j <k, let

Pij = (Vi,Vit1,...,vj) be the subpath of p from vertex v; to vertex v;.
Then, p;; is a shortest path from v; to v;.
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Shortest-paths Problem

Relaxation on an edge (u,v)

v.d : a shortest path (distance) estimation from the source s.
Initially set v.d = 4o except s.d =0, and v.7w = nil.
RELAX(u,v,w)
1. if v.d > u.d+w(u,v) then
2: v.d=u.d+w(u,v)

3: VIT=u // update the predecessor
u v u %
O—O® O—®
1 RELAX (u,v,w) 1 RELAX(u,v,w)
u v % u v %
2 2

e—0 &—@
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Shortest-paths Problem

Properties of shortest paths and relaxation

» Triangle inequality (Lemma 24.10) For any edge (u,v) € E, we
have 6(s,v) < 8(s,u) +w(u,v)

» Upper-bound property (Lemma 24.11) We always have
v.d > (s, v) for all vertices v € V, and once v.d achieves the
value (s, v), it never changes.

> No-path property (Corollary 24.12) If there is no path from s to
v, then we always have v.d = 3(s,v) = oo

» Convergence property (Lemma 24.14) If s~ u — vis a
shortest path in G for some u,v € V, and if u.d = (s, u) at any
time prior to relaxing edge (u,v), then v.d = §(s,v) at all times
afterward.
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Shortest-paths Problem

Properties of shortest paths and relaxation

» Path-relaxation property (Lemma 24.15) If p = (vo, vy, ..., vk)
is a shortest path from s = vy to v, and we relax the edges of p in
the order (vo,v1),(vi,v2),--., (Vk—1,Vk), then ve.d = 8(s,vy).
This property holds regardless of any other relaxation steps that
occur, even if they are intermixed with relaxations of the edges
of p.

» Predecessor-subgraph property (Lemma 24.17) Once
v.d = 0(s,v) for all v € V, the predecessor subgraph is a
shortest-paths tree rooted at s.
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The Bellman-Ford Algorithm

The Bellman-Ford Algorithm

The Bellman-Ford algorithm solves the single-source shortest-paths
problem in the general case in which edge weights may be negative.
Given a weighted, directed graph G = (V, E) with source s and weight
function w : E — R, the Bellman-Ford algorithm returns a boolean
value indicating whether or not there is a negative-weight cycle
that is reachable from the source. If there is such a cycle, the
algorithm indicates that no solution exists. If there is no such cycle,
the algorithm produces the shortest paths and their weights.
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The Bellman-Ford Algorithm

BELLMAN-FORD

BELLMAN-FORD(G, w, s)

1: for eachv e Vdo

2 v.d = oo V.t = nil

3 5.d=0

4: fori=1to |G.V|—1do

5: for each edge (u,v) € G.E do
6: RELAX (u,v,w)

7: for each edge (u,v) € G.E do

8 if v.d > u.d+w(u,v) then
9: return FALSE

10: return TRUE
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The Bellman-Ford Algorithm

Example
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The Bellman-Ford Algorithm
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The Bellman-Ford Algorithm
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The Bellman-Ford Algorithm
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The Bellman-Ford Algorithm

Example
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The Bellman-Ford Algorithm

BELLMAN-FORD : Analysis

Correctness? Time Complexity=0(VE)
BELLMAN-FORD(G,w,s)
1: for eachv e Vdo // initialization
2: v.d = oo v.t = nil
3 5.d=0
4: fori=1to0 |G.V|—1do // Process each edge |V| — 1 times
5: for each edge (u,v) € G.E do // relax each edge once
6 RELAX (u,v,w)
7: for each edge (u,v) € G.E do // check for a negative-weight cycle
8 if v.d > u.d+w(u,v) then
9: return FALSE

10: return TRUE
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Single-source Shortest Paths in Directed Acyclic Graphs

Single-source Shortest Paths in DAGs

By relaxing the edges of a weighted DAG (directed acyclic graph)
G = (V,E) according to a topological sort of its vertices, we can
compute shortest paths from a single source in @(V + E) time.
Shortest paths are always well defined in a DAG, since even if there
are negative-weight edges, no negative-weight cycles can exist.

DAG-SHORTEST-PATHS(G, w, s)

1: topologically sort the vertices of G

2: INITIAL-SINGLE-SOURCE(G,s)

3: for each vertex u, taken in topologically sorted order do
4: for each vertex v € G.Adj[u] do

5 RELAX (u,v,w)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Single-source Shortest Paths in Directed Acyclic Graphs

Example
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Single-source Shortest Paths in Directed Acyclic Graphs

Single-source Shortest Paths in DAGs: Analysis

Correctness?
Time Complexity=0(V + E)

DAG-SHORTEST-PATHS (G, w, s)

1: topologically sort the vertices of G

2: INITIAL-SINGLE-SOURCE(G,s)

3: for each vertex u, taken in topologically sorted order do
4: for each vertex v € G.Adj[u] do

5 RELAX(u,v,w)
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Dijkstra’s Algorithm

Dijkstra’s Algorithm

» If no negative edge weights, we can beat BF
» Similar to breadth-first search

» Grow a tree gradually, advancing from vertices taken from a
queue

» Also similar to Prim’s algorithm for MST
» Use a priority queue keyed on d[v]
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Dijkstra’s Algorithm

Dijkstra’s Algorithm

DUKSTRA(G,w,s)
1: INITIAL-SINGLE-SOURCE(G,s)
2. S5=0 /I nodes with the shortest distance computed

3 0=GV
4. while Q # @ do

5: u = EXTRACT-MIN(Q)

6: S=SuU{u}

7: for each vertex v € G.Adj[u] do
8: RELAX (u,v,w)
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Dijkstra’s Algorithm

Example
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Dijkstra’s Algorithm

Correctness of Dijkstra’s algorithm

Theorem 24.6 (Correctness of Dijkstra’s algorithm) Dijkstra’s
algorithm, run on a weighted, directed graph G = (V,E) with
non-negative weight function w and source s, terminates with
u.d = 0(s,u) for all vertices u € V.

Corollary 24.7 If we run Dijkstra’s algorithm on a weighted, directed
graph G = (V,E) with non-negative weight function w and source s,
then at termination, the predecessor subgraph Gy is a shortest-paths
tree rooted at s.
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Dijkstra’s Algorithm

Dijkstra’s Algorithm - Time Complexity

Time: O(E + VlogV), by implementing the min-priority queue with a
Fibonacci heap.
DIJKSTRA(G,w, s)
1: INITIAL-SINGLE-SOURCE(G,s)
2. S=0
3: 0=G.V /' |V| INSERT (Q)
while Q # @ do
u = EXTRACT-MIN(Q) /I'|V| EXTRACT-MIN(Q)
S=SuU{u}
for each vertex v € G.Adj[u] do
RELAX (u,v,w) /I |E| DECREASE-KEY(Q)
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