Introduction to Algorithms
Chapter 24 : Single-Source Shortest Paths

Xiang-Yang Li and Haisheng Tan

School of Computer Science and Technology
University of Science and Technology of China (USTC)

Fall Semester 2024

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Outline of Topics

Shortest-paths Problem

The Bellman-Ford Algorithm

Single-source Shortest Paths in Directed Acyclic Graphs

Dijkstra’s Algorithm

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Shortest-paths Problem

shortest-paths problem

In a shortest-paths problem, we are given a weighted, directed graph
G = (V,E), with weight function w : E — R mapping edges to
real-valued weights.

The weight w(p) of path p = (v, v,..., V) is the sum of the weights
of its constituent edges:

k
w(p) = ; w(vi_1,vi).

We define the shortest-path weight & (u,v) from u to v by

o) = min{w(p) : u > v} if there is a path from u to v,
’ oo otherwise.

A shortest path from vertex u to vertex v is then defined as any path
p with weight w(p) = 6(u,v).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Shortest-paths Problem

Variants

In this chapter, we shall focus on the single-source shortest-paths
problem: given a graph G = (V,E), we want to find a shortest path
from a given source vertex s € V to each vertex v € V. The algorithm
for the single-source problem can solve many other problems,
including the following variants:

» Single-destination shortest-paths problem: Find a shortest
path to a given destination vertex ¢ from each vertex v.

» Single-pair shortest-path problem: Find a shortest path from u
to v for given vertices u and v.

> All-pairs shortest-paths problem: Find a shortest path from u
to v for every pair of vertices u and v. Although we can solve this
problem by running a single-source algorithm once from each
vertex, we usually can solve it faster.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Shortest-paths Problem

Optimal substructure of a shortest path

Lemma 24.1 (Subpaths of shortest paths are shortest paths)

Given a weighted, directed graph G = (V, E) with weight function
w:E— TR, letp = (vp,vi,...,v) be a shortest path from vertex vy to
vertex v and, for any i and j such that 0 <i <j <k, let

Pij = (Vi,Vit1,...,vj) be the subpath of p from vertex v; to vertex v;.
Then, p;; is a shortest path from v; to v;.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Shortest-paths Problem

Relaxation on an edge (u,v)

v.d : a shortest path (distance) estimation from the source s.
Initially set v.d = 4o except s.d =0, and v.7w = nil.
RELAX(u,v,w)
1. if v.d > u.d+w(u,v) then
2: v.d=u.d+w(u,v)

3: VIT=u // update the predecessor
u v u %
O—O® O—®
1 RELAX (u,v,w) 1 RELAX(u,v,w)
u v % u v %
2 2

e—0 &—@

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Shortest-paths Problem

Properties of shortest paths and relaxation

» Triangle inequality (Lemma 24.10) For any edge (u,v) € E, we
have 6(s,v) < 8(s,u) +w(u,v)

» Upper-bound property (Lemma 24.11) We always have
v.d > (s, v) for all vertices v € V, and once v.d achieves the
value (s, v), it never changes.

> No-path property (Corollary 24.12) If there is no path from s to
v, then we always have v.d = 3(s,v) = oo

» Convergence property (Lemma 24.14) If s~ u — vis a
shortest path in G for some u,v € V, and if u.d = (s, u) at any
time prior to relaxing edge (u,v), then v.d = §(s,v) at all times
afterward.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Shortest-paths Problem

Properties of shortest paths and relaxation

» Path-relaxation property (Lemma 24.15) If p = (vo, vy, ..., vk)
is a shortest path from s = vy to v, and we relax the edges of p in
the order (vo,v1),(vi,v2),--., (Vk—1,Vk), then ve.d = 8(s,vy).
This property holds regardless of any other relaxation steps that
occur, even if they are intermixed with relaxations of the edges
of p.

» Predecessor-subgraph property (Lemma 24.17) Once
v.d = 0(s,v) for all v € V, the predecessor subgraph is a
shortest-paths tree rooted at s.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

The Bellman-Ford Algorithm

The Bellman-Ford Algorithm

The Bellman-Ford algorithm solves the single-source shortest-paths
problem in the general case in which edge weights may be negative.
Given a weighted, directed graph G = (V, E) with source s and weight
function w : E — R, the Bellman-Ford algorithm returns a boolean
value indicating whether or not there is a negative-weight cycle
that is reachable from the source. If there is such a cycle, the
algorithm indicates that no solution exists. If there is no such cycle,
the algorithm produces the shortest paths and their weights.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

The Bellman-Ford Algorithm

BELLMAN-FORD

BELLMAN-FORD(G, w, s)

1: for eachv e Vdo

2 v.d = oo V.t = nil

3 5.d=0

4: fori=1to |G.V|—1do

5: for each edge (u,v) € G.E do
6: RELAX (u,v,w)

7: for each edge (u,v) € G.E do

8 if v.d > u.d+w(u,v) then
9: return FALSE

10: return TRUE

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

The Bellman-Ford Algorithm

Example

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

The Bellman-Ford Algorithm

Example

iang-Yang Li and Haisheng Tan Introduction to Algorithms

The Bellman-Ford Algorithm

Example

g-Yang Li and Haisheng Tan Introduction to Algorithms

The Bellman-Ford Algorithm

Example

iang-Yang Li and Haisheng Tan Introduction to Algorithms

The Bellman-Ford Algorithm

Example

iang-Yang Li and Haisheng Tan Introduction to Algorithms

The Bellman-Ford Algorithm

BELLMAN-FORD : Analysis

Correctness? Time Complexity=0(VE)
BELLMAN-FORD(G,w,s)
1: for eachv e Vdo // initialization
2: v.d = oo v.t = nil
3 5.d=0
4: fori=1to0 |G.V|—1do // Process each edge |V| — 1 times
5: for each edge (u,v) € G.E do // relax each edge once
6 RELAX (u,v,w)
7: for each edge (u,v) € G.E do // check for a negative-weight cycle
8 if v.d > u.d+w(u,v) then
9: return FALSE

10: return TRUE

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Single-source Shortest Paths in Directed Acyclic Graphs

Single-source Shortest Paths in DAGs

By relaxing the edges of a weighted DAG (directed acyclic graph)
G = (V,E) according to a topological sort of its vertices, we can
compute shortest paths from a single source in @(V + E) time.
Shortest paths are always well defined in a DAG, since even if there
are negative-weight edges, no negative-weight cycles can exist.

DAG-SHORTEST-PATHS(G, w, s)

1: topologically sort the vertices of G

2: INITIAL-SINGLE-SOURCE(G,s)

3: for each vertex u, taken in topologically sorted order do
4: for each vertex v € G.Adj[u] do

5 RELAX (u,v,w)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Single-source Shortest Paths in Directed Acyclic Graphs

Example

Li and Haisheng Tan Introduction to Algorithms

Single-source Shortest Paths in Directed Acyclic Graphs

Example

Li and Haisheng Tan Introduction to Algorithms

Single-source Shortest Paths in Directed Acyclic Graphs

Example

Li and Haisheng Tan Introduction to Algorithms

Single-source Shortest Paths irected Acyclic Graphs

Example

Li and Haisheng Tan Introduction to Algorithms

Single-source Shortest Paths in Directed Acyclic Graphs

Example

Li and Haisheng Tan Introduction to Algorithms

Single-source Shortest Paths in Directed Acyclic Graphs

Example

Li and Haisheng Tan Introduction to Algorithms

Single-source Shortest Paths in Directed Acyclic Graphs

Example

Li and Haisheng Tan Introduction to Algorithms

Single-source Shortest Paths in Directed Acyclic Graphs

Single-source Shortest Paths in DAGs: Analysis

Correctness?
Time Complexity=0(V + E)

DAG-SHORTEST-PATHS (G, w, s)

1: topologically sort the vertices of G

2: INITIAL-SINGLE-SOURCE(G,s)

3: for each vertex u, taken in topologically sorted order do
4: for each vertex v € G.Adj[u] do

5 RELAX(u,v,w)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Dijkstra’s Algorithm

Dijkstra’s Algorithm

» If no negative edge weights, we can beat BF
» Similar to breadth-first search

» Grow a tree gradually, advancing from vertices taken from a
queue

» Also similar to Prim’s algorithm for MST
» Use a priority queue keyed on d[v]

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Dijkstra’s Algorithm

Dijkstra’s Algorithm

DUKSTRA(G,w,s)
1: INITIAL-SINGLE-SOURCE(G,s)
2. S5=0 /I nodes with the shortest distance computed

3 0=GV
4. while Q # @ do

5: u = EXTRACT-MIN(Q)

6: S=SuU{u}

7: for each vertex v € G.Adj[u] do
8: RELAX (u,v,w)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Dijkstra’s Algorithm

Example

iang-Yang Li and Haisheng Tan Introduction to Algorithms

Dijkstra’s Algorithm

Example

g-Yang Li and Haisheng Tan Introduction to Algorithms

Dijkstra’s Algorithm

Example

Li and Haisheng Tan Introduction to Algorithms

Dijkstra’s Algorithm

Example

Li and Haisheng Tan Introduction to Algorithms

Dijkstra’s Algorithm

Example

g-Yang Li and Haisheng Tan Introduction to Algorithms

Dijkstra’s Algorithm

Example

g-Yang Li and Haisheng Tan Introduction to Algorithms

Dijkstra’s Algorithm

Correctness of Dijkstra’s algorithm

Theorem 24.6 (Correctness of Dijkstra’s algorithm) Dijkstra’s
algorithm, run on a weighted, directed graph G = (V,E) with
non-negative weight function w and source s, terminates with
u.d = 0(s,u) for all vertices u € V.

Corollary 24.7 If we run Dijkstra’s algorithm on a weighted, directed
graph G = (V,E) with non-negative weight function w and source s,
then at termination, the predecessor subgraph Gy is a shortest-paths
tree rooted at s.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Dijkstra’s Algorithm

Dijkstra’s Algorithm - Time Complexity

Time: O(E + VlogV), by implementing the min-priority queue with a
Fibonacci heap.
DIJKSTRA(G,w, s)
1: INITIAL-SINGLE-SOURCE(G,s)
2. S=0
3: 0=G.V /' |V| INSERT (Q)
while Q # @ do
u = EXTRACT-MIN(Q) /I'|V| EXTRACT-MIN(Q)
S=SuU{u}
for each vertex v € G.Adj[u] do
RELAX (u,v,w) /I |E| DECREASE-KEY(Q)

55

2 FH e W

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

	Shortest-paths Problem
	The Bellman-Ford Algorithm
	Single-source Shortest Paths in Directed Acyclic Graphs
	Dijkstra's Algorithm

