Introduction to Algorithms Chapter 24 : Single-Source Shortest Paths

Xiang-Yang Li and Haisheng Tan

School of Computer Science and Technology University of Science and Technology of China (USTC)

Fall Semester 2024

E SQA

Outline of Topics

Shortest-paths Problem

The Bellman-Ford Algorithm

Single-source Shortest Paths in Directed Acyclic Graphs

Dijkstra's Algorithm

E OQC

shortest-paths problem

In a **shortest-paths problem**, we are given a weighted, directed graph G = (V, E), with weight function $w : E \to \mathbb{R}$ mapping edges to real-valued weights. The **weight** w(p) of path $p = \langle v_0, v_1, \dots, v_k \rangle$ is the sum of the weights

of its constituent edges:

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i).$$

We define the **shortest-path weight** $\delta(u, v)$ from *u* to *v* by

$$\delta(u,v) = \begin{cases} \min\{w(p) : u \stackrel{p}{\leadsto} v\} & \text{if there is a path from } u \text{ to } v, \\ \infty & \text{otherwise.} \end{cases}$$

A **shortest path** from vertex *u* to vertex *v* is then defined as any path *p* with weight $w(p) = \delta(u, v)$.

Variants

In this chapter, we shall focus on the **single-source shortest-paths problem**: given a graph G = (V, E), we want to find a shortest path from a given source vertex $s \in V$ to each vertex $v \in V$. The algorithm for the single-source problem can solve many other problems, including the following variants:

- Single-destination shortest-paths problem: Find a shortest path to a given destination vertex *t* from each vertex *v*.
- Single-pair shortest-path problem: Find a shortest path from u to v for given vertices u and v.
- All-pairs shortest-paths problem: Find a shortest path from u to v for every pair of vertices u and v. Although we can solve this problem by running a single-source algorithm once from each vertex, we usually can solve it faster.

Optimal substructure of a shortest path

Lemma 24.1 (Subpaths of shortest paths are shortest paths) Given a weighted, directed graph G = (V, E) with weight function $w : E \to \mathbb{R}$, let $p = \langle v_0, v_1, \dots, v_k \rangle$ be a shortest path from vertex v_0 to vertex v_k and, for any *i* and *j* such that $0 \le i \le j \le k$, let $p_{ij} = \langle v_i, v_{i+1}, \dots, v_j \rangle$ be the subpath of *p* from vertex v_i to vertex v_j . Then, p_{ij} is a shortest path from v_i to v_j .

Relaxation on an edge (u, v)

v.d : a shortest path (distance) estimation from the source *s*. Initially set $v.d = +\infty$ except s.d = 0, and $v.\pi = nil$.

 $\operatorname{RELAX}(u, v, w)$

1: **if**
$$v.d > u.d + w(u, v)$$
 then

2:
$$v.d = u.d + w(u,v)$$

3: $v.\pi = u$ // update the predecessor

E SQA

Properties of shortest paths and relaxation

- ► Triangle inequality (Lemma 24.10) For any edge $(u, v) \in E$, we have $\delta(s, v) \leq \delta(s, u) + w(u, v)$
- **Upper-bound property** (Lemma 24.11) We always have $v.d \ge \delta(s, v)$ for all vertices $v \in V$, and once v.d achieves the value $\delta(s, v)$, it never changes.
- No-path property (Corollary 24.12) If there is no path from s to v, then we always have v.d = δ(s, v) = ∞
- **Convergence property** (Lemma 24.14) If $s \rightsquigarrow u \rightarrow v$ is a shortest path in *G* for some $u, v \in V$, and if $u.d = \delta(s, u)$ at any time prior to relaxing edge (u, v), then $v.d = \delta(s, v)$ at all times afterward.

Properties of shortest paths and relaxation

- Path-relaxation property (Lemma 24.15) If p = (v₀, v₁,..., v_k) is a shortest path from s = v₀ to v_k, and we relax the edges of p in the order (v₀, v₁), (v₁, v₂),..., (v_{k-1}, v_k), then v_k.d = δ(s, v_k). This property holds regardless of any other relaxation steps that occur, even if they are intermixed with relaxations of the edges of p.
- **Predecessor-subgraph property** (Lemma 24.17) Once $v.d = \delta(s, v)$ for all $v \in V$, the predecessor subgraph is a shortest-paths tree rooted at *s*.

Shortest-paths Problem **The Bellman-Ford Algorithm** Single-source Shortest Paths in Digestra's Algorithm Dijkstra's Algorithm

The Bellman-Ford Algorithm

The **Bellman-Ford algorithm** solves the single-source shortest-paths problem in the general case in which edge weights **may be negative**. Given a weighted, directed graph G = (V, E) with source *s* and weight function $w : E \to \mathbb{R}$, the Bellman-Ford algorithm returns a boolean value indicating **whether or not there is a negative-weight cycle that is reachable from the source**. If there is such a cycle, the algorithm indicates that no solution exists. If there is no such cycle, the algorithm produces the shortest paths and their weights.

E SQA

(D) (A) (3) (3) (3)

Shortest-paths Problem **The Bellman-Ford Algorithm** Single-source Shortest Paths in Digestra's Algorithm Dijkstra's Algorithm

BELLMAN-FORD

BELLMAN-FORD(G, w, s)1: for each $v \in V$ do 2: $v.d = \infty$: $v.\pi = nil$ $3 \cdot s d = 0$ 4: for i = 1 to |G.V| - 1 do for each edge $(u, v) \in G.E$ do 5: $\operatorname{RELAX}(u, v, w)$ 6: 7: for each edge $(u, v) \in G.E$ do if v.d > u.d + w(u, v) then 8: return FALSE 9٠ 10: return TRUE

Example

5 OQC

BELLMAN-FORD : Analysis

Correctness? Time Complexity=O(VE)BELLMAN-FORD(G, w, s)1: for each $v \in V$ do // initialization 2: $v.d = \infty$: $v.\pi = nil$ 3: s.d = 04: for i = 1 to |G.V| - 1 do // Process each edge |V| - 1 times 5: for each edge $(u, v) \in G.E$ do // relax each edge once RELAX(u, v, w)6: 7: for each edge $(u, v) \in G.E$ do // check for a negative-weight cycle if v.d > u.d + w(u,v) then 8:

9: return FALSE

10: return TRUE

Single-source Shortest Paths in DAGs

By relaxing the edges of a weighted DAG (directed acyclic graph) G = (V, E) according to a topological sort of its vertices, we can compute shortest paths from a single source in $\Theta(V+E)$ time. Shortest paths are always well defined in a DAG, since even if there are negative-weight edges, no negative-weight cycles can exist.

DAG-SHORTEST-PATHS(G, w, s)

- 1: topologically sort the vertices of G
- 2: INITIAL-SINGLE-SOURCE(G, s)
- 3: for each vertex *u*, taken in topologically sorted order do
- 4: **for** each vertex $v \in G.Adj[u]$ **do**
- 5: **RELAX**(u, v, w)

E SOR

Example

14/20

Example

14/20

Example

14/20

・ロン・母シ・ヨン・ヨン ヨーのへの

Example

(日)(周)(三)(三)(日)

Example

(日)(周)(三)(三)(日)

Example

Example

Single-source Shortest Paths in DAGs: Analysis

Correctness? Time Complexity=O(V+E)

DAG-SHORTEST-PATHS(G, w, s)

- 1: topologically sort the vertices of G
- 2: INITIAL-SINGLE-SOURCE(G, s)
- 3: for each vertex *u*, taken in topologically sorted order do
- 4: **for** each vertex $v \in G.Adj[u]$ **do**
- 5: **RELAX**(u, v, w)

E SQA

Dijkstra's Algorithm

If no negative edge weights, we can beat BF

- Similar to breadth-first search
 - Grow a tree gradually, advancing from vertices taken from a queue
- Also similar to Prim's algorithm for MST
 - Use a priority queue keyed on d[v]

Dijkstra's Algorithm

DIJKSTRA(G, w, s)

- 1: INITIAL-SINGLE-SOURCE(G, s)
- 2: $S = \emptyset$ // nodes with the shortest distance computed
- 3: Q = G.V
- 4: while $Q \neq \emptyset$ do

5:
$$u = \text{EXTRACT-MIN}(Q)$$

- $6: \qquad S = S \cup \{u\}$
- 7: **for** each vertex $v \in G.Adj[u]$ **do**
- 8: $\operatorname{RELAX}(u, v, w)$

Example

Correctness of Dijkstra's algorithm

Theorem 24.6 (Correctness of Dijkstra's algorithm) Dijkstra's algorithm, run on a weighted, directed graph G = (V, E) with non-negative weight function *w* and source *s*, terminates with $u.d = \delta(s, u)$ for all vertices $u \in V$.

Corollary 24.7 If we run Dijkstra's algorithm on a weighted, directed graph G = (V, E) with non-negative weight function w and source s, then at termination, the predecessor subgraph G_{π} is a shortest-paths tree rooted at s.

Dijkstra's Algorithm - Time Complexity

Time: $O(E + V \log V)$, by implementing the min-priority queue with a Fibonacci heap.

DIJKSTRA(G, w, s)

1: INITIAL-SINGLE-SOURCE(G, s)

2: $S = \emptyset$

- 3: Q = G.V // |V| INSERT (Q)
- 4: while $Q \neq \emptyset$ do
- 5: u = EXTRACT-MIN(Q) // |V| EXTRACT-MIN(Q)
- $6: \qquad S = S \cup \{u\}$
- 7: **for** each vertex $v \in G.Adj[u]$ **do**
- 8: **R**ELAX(u, v, w) // |E| **D**ECREASE-**K**EY(**Q**)