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All-Pairs Shortest Paths

In this chapter, we consider the problem of finding shortest
paths between all pairs of vertices in a graph G = (V,E), where
|V|= n.
Input: an n×n matrix W representing the edge weights of an
n-vertex directed graph G = (V,E)

wij =


0 if i = j
the weight of directed edge (i, j) if i ̸= j and (i, j) ∈ E

∞ if i ̸= j and (i, j) /∈ E

Output: an n×n matrix D = (dij) where entry dij contains the
weight of a shortest path from vertex i to vertex j .
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Shortest paths and matrix multiplication

Recall: Single-Source Shortest Paths
Bellman-Ford: O(VE)
Dijkstra: O(E+V logV) (no negative edge)

This section presents a dynamic-programming algorithm.
Each major loop of the dynamic program will invoke an
operation that is very similar to matrix multiplication, so that
the algorithm will look like repeated matrix multiplication.

Start by developing a Θ
(
V4) time algorithm for the

all-pairs shortest-paths problem and then improve it to
Θ
(
V3 lgV

)
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A recursive solution

Optimal Substructure: let l(m)
ij be the minimum weight of any

path from vertex i to vertex j that contains at most m edges.
Thus,

l(0)ij =

{
0 if i = j
∞ if i ̸= j

For m ≥ 1

l(m)
ij = min

(
l(m−1)
ij , min

1≤k≤n

{
l(m−1)
ik +wkj

})
= min

1≤k≤n

{
l(m−1)
ik +wkj

}
The latter equality follows since wjj = 0 for all j
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A recursive solution

If the graph contains no negative-weight cycles, then for
every pair of vertices i and j for which δ (i, j)< ∞, there is a
shortest path from i to j that is simple and thus contains at
most n−1 edges.

The actual shortest-path weights are therefore given by

δ (i, j) = l(n−1)
ij = l(n)ij = l(n+1)

ij

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 6 / 45



Outline
25.1 Shortest paths and matrix multiplication

25.2 The Floyd-Warshall algorithm
25.3 Johnson’s algorithm for sparse graphs

A recursive solution
Computing the weights bottom up
Improving the running time

Computing the weights bottom up

Given matrices L(m−1) and W , returns the matrix L(m),
that is, extending one more edge.
EXTEND-SHORTEST-PATHS(L,W)
1: n = L.rows
2: let L′ =

(
l′ij
)

be a new n×n matrix
3: for i = 1 to n do
4: for j = 1 to n do
5: l′ij = ∞
6: for k = 1 to n do
7: l′ij = min

(
l′ij, lik +wkj

)
8: return L′

Time: Θ
(
n3) due to the three nested for loops
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Computing the weights bottom up

Suppose we wish to compute the matrix product C = A ·B
of two n×n matrices A and B.

Then, for i, j = 1,2, . . . ,n, we compute

cij =
n
∑
k=1

aik ·bkj
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Computing the weights bottom up

If we make the substitutions

l(m−1) → a
w → b

l(m) → c
min →+

+→ ·
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Computing the weights bottom up

If we make these changes to EXTEND - SHORTEST -
PATHS, and also replace ∞ (the identity for min) by 0 (the
identity for addition)
SQUARE-MATRIX-MULTIPLY(A,B)
1: n = L.rows
2: let C be a new n×n matrix
3: for i = 1 to n do
4: for j = 1 to n do
5: c′ij = 0
6: for k = 1 to n do
7: cij = cij +aik ·bkj

8: return C
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Computing the weights bottom up

Letting A ·B denote the matrix “product” returned by
EXTEND-SHORTEST-PATHS(A,B), we compute the sequence
of n−1 matrices.

L(1) = L(0) ·W = W
L(2) = L(1) ·W = W2

L(3) = L(2) ·W = W3

. . .

L(n−1) = L(n−2) ·W = Wn−1
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Computing the weights bottom up

The following procedure computes this sequence in Θ
(
n4)

times.
SLOW-ALL-PAIRS-SHORTEST-PATHS(W)
1: n = W.rows
2: L(1) = W
3: for m = 2 to n−1 do
4: L(m) be a new n×n matrix
5: L(m) = EXTEND−SHORTEST−PATHS

(
L(m−1),W

)
6: return L(n−1)
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Example

Recall: l(m)
ij = min1≤k≤n

{
l(m−1)
ik +wkj

}

2

1 3

5 4

3 4

82

6

7 1
–4 –5

L.1/ D

�
0 3 8 1 �4

1 0 1 1 7

1 4 0 1 1
2 1 �5 0 1
1 1 1 6 0

˘

L.2/ D

�
0 3 8 2 �4

3 0 �4 1 7

1 4 0 5 11

2 �1 �5 0 �2

8 1 1 6 0

˘
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Example

Recall: l(m)
ij = min1≤k≤n

{
l(m−1)
ik +wkj

}

2
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5 4

3 4

82

6

7 1
–4 –5

L.3/ D

�
0 3 �3 2 �4

3 0 �4 1 �1

7 4 0 5 11

2 �1 �5 0 �2
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˘

L.4/ D

�
0 1 �3 2 �4

3 0 �4 1 �1

7 4 0 5 3

2 �1 �5 0 �2

8 5 1 6 0

˘
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Improving the running time

Our goal, is not to compute all the L(m) matrices, we are
interested only in matrix L(n−1).

In the absence of negative-weight cycles, equation implies
L(m) = L(n−1) for all integers m ≥ n−1

Therefore, we can compute L(n−1) with only ⌈lg(n−1)⌉
matrix products.
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Improving the running time

The “matrix production” defined by
EXTEND-SHORTEST-PATHES is associative.

L(1) = L(0) ·W = W
L(2) = L(1) ·W = W2 = W ·W
L(4) = W4 = W2 ·W2

L(8) = W8 = W4 ·W4

. . .

L (2⌈lg(n−1)⌉) = W (2⌈lg(n−1)⌉) = W (2⌈lg(n−1)⌉−1) ·W (2⌈lg(n−1)⌉−1)

Since 2⌈lg(n−1)⌉ ≥ n−1, we have L (2⌈lg(n−1)⌉) = L(n−1).
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repeated squaring

FASTER-ALL-PAIRS-SHORTEST-PATHS(W)
1: n = W.rows
2: L(1) = W
3: while m ≤ n−1 do
4: Let L(2m) be a new n×n matrix
5: L(2m) = EXTEND−SHORTEST−PATHS

(
L(m),L(m)

)
6: m=2m
7: return Lm

Because each of the [lg(n−1)] matrix products takes Θ
(
n3)

times, FASTER-ALL-PAIRS-SHORTEST-PATHS runs in
Θ
(
n3 lgn

)
times.
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The Floyd-Warshall algorithm

This section presents a different dynamic-programming
algorithm known as the Floyd-Warshall algorithm that runs in
Θ
(
n3) times.

As before, negative-weight edges may be present, but we
assume that there are no negative-weight cycles.
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The structure of a shortest path

The Floyd-Warshall algorithm considers the intermediate
vertices of a shortest path, where an intermediate vertex of a
simple path p = ⟨v1,v2, . . . ,vl⟩ is any vertex of p other than v1
or vl,that is, any vertex in the set {v2,v3, . . . ,vl−1}.
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The structure of a shortest path

The vertices of G are V = {1,2,3, . . . ,n}.let us consider a
subset{1,2,3, . . . ,k},of vertices for some k.

For any pair of vertices i, j ∈ V, consider all paths from i to
j whose intermediate vertices are all drawn from {1,2,3, . . . ,k},
and let p be a minimum-weight path from among them.

The Floyd-Warshall algorithm exploits a relationship
between path p and shortest paths from i to j with all
intermediate vertices in the set{1,2,3, . . . ,k−1}
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The structure of a shortest path

The relationship depends on whether or not k is an
intermediate vertex of path p.
▶ If not,then all intermediate vertices of path p are in the set

{1,2,3, . . . ,k−1} .
▶ If yes, then we decompose p into i p1

; k p2
; j.p1 is a shortest

path from i to k with all intermediate vertices in the set
{1,2,3, . . . ,k−1}, The same is true of p2�
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The structure of a shortest path

i

k

j

p1 p2

p: all intermediate vertices in f1; 2; : : : ; kg

all intermediate vertices in f1; 2; : : : ; k � 1gall intermediate vertices in f1; 2; : : : ; k � 1g
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A recursive solution

Let d(k)
ij be the weight of a shortest path from vertex i to

vertex j for which all intermediate vertices are in the set
{1,2,3, . . . ,k}

d(k)
ij =

{
wij if k = 0
min

(
d(k−1)

ij ,d(k−1)
ik +d(k−1)

kj

)
if k ≥ 1

The final answer d(n)
ij = δ (i, j) for all i, j ∈ V
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Computing bottom up

FLOYD-WARSHALL(W)
1: n = W.rows
2: D(0) = W
3: for k = 1 to n do
4: let D(k) = d(k)

ij be a new n×n matrix
5: for i = 1to n do
6: for j = 1to n do
7: d(k)

ij = min
(

d(k−1)
ij ,d(k−1)

ik +d(k−1)
kj

)
8: return Dn

Because each execution of line 7 takes O(1) time, the
algorithm runs in time Θ

(
n3) .
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Example
Recall: d(k)

ij = min
(

d(k−1)
ij ,d(k−1)

ik +d(k−1)
kj

)

D.0/ D

�
0 3 8 1 �4

1 0 1 1 7

1 4 0 1 1
2 1 �5 0 1
1 1 1 6 0

˘
….0/ D

�
NIL 1 1 NIL 1

NIL NIL NIL 2 2

NIL 3 NIL NIL NIL

4 NIL 4 NIL NIL

NIL NIL NIL 5 NIL

˘

D.1/ D

�
0 3 8 1 �4

1 0 1 1 7

1 4 0 1 1
2 5 �5 0 �2

1 1 1 6 0

˘
….1/ D

�
NIL 1 1 NIL 1

NIL NIL NIL 2 2

NIL 3 NIL NIL NIL

4 1 4 NIL 1

NIL NIL NIL 5 NIL

˘

D.2/ D

�
0 3 8 4 �4

1 0 1 1 7

1 4 0 5 11

2 5 �5 0 �2

1 1 1 6 0

˘
….2/ D

�
NIL 1 1 2 1

NIL NIL NIL 2 2

NIL 3 NIL 2 2

4 1 4 NIL 1

NIL NIL NIL 5 NIL

˘
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D.3/ D

�
0 3 8 4 �4

1 0 1 1 7

1 4 0 5 11

2 �1 �5 0 �2

1 1 1 6 0

˘
….3/ D

�
NIL 1 1 2 1

NIL NIL NIL 2 2

NIL 3 NIL 2 2

4 3 4 NIL 1

NIL NIL NIL 5 NIL

˘

D.4/ D

�
0 3 �1 4 �4

3 0 �4 1 �1

7 4 0 5 3

2 �1 �5 0 �2

8 5 1 6 0

˘
….4/ D

�
NIL 1 4 2 1

4 NIL 4 2 1

4 3 NIL 2 1

4 3 4 NIL 1

4 3 4 5 NIL

˘

D.5/ D

�
0 1 �3 2 �4

3 0 �4 1 �1

7 4 0 5 3

2 �1 �5 0 �2

8 5 1 6 0

˘
….5/ D

�
NIL 3 4 5 1

4 NIL 4 2 1

4 3 NIL 2 1

4 3 4 NIL 1

4 3 4 5 NIL

˘
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Constructing a shortest path

We can compute the predecessor matrix Π while the
algorithm computes the matrices D(k).

We compute a sequence of matricesΠ(0),Π(1), . . . ,Π(n),
where Π = Π(n)and we define π(k)

ij as the predecessor of vertex j
on a shortest path from vertex i with all intermediate vertices
in the set {1,2, . . . ,k}.
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Constructing a shortest path

When k = 0,

π(0)
ij =

{
NIL if i = j or wij = ∞
i if i ̸= j and wij < ∞

When k ≥ 1,

π(k)
ij =

{
π(k−1)

ij if d(k−1)
ij ≤ d(k−1)

ik +d(k−1)
kj

π(k−1)
kj if d(k−1)

ij > d(k−1)
ik +d(k−1)

kj
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Transitive closure of a directed graph

We define the transitive closure of G as the graph
G∗ = (V,E∗), where E∗ = (i, j) : there is a path from vertex i to
vertex j in G.

One way to compute the transitive closure of a graph in
Θ
(
n3) time is to assign a weight of 1 to each edge of E and run

the Floyd-Warshall algorithm.
If there is a path from vertex i to vertex j, we get dij < n,

otherwise, we get dij = ∞
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Transitive closure of a directed graph

Another way to compute the transitive closure of G in
Θ
(
n3) time that can save time and space in practice.

This method substitutes the logical operations
∨( logical OR ) and ∧ (logical AND) for the arithmetic
operations min and + in the Floyd-Warshall algorithm.
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Transitive closure of a directed graph

For i, j,k = 1,2, ...,n, we define t(k)ij to be 1 if there exists a
path in graph G from vertex i to vertex j with all intermediate
vertices in the set {1,2,3, ...,k}, and 0 otherwise.

We construct the transitive closure G∗ = (V,E∗), by
putting edge (i, j) into E∗ if and only if t(n)ij = 1
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Transitive closure of a directed graph

A recursive definition of t(k)ij is:

t(0)ij =

{
0 if i ̸= j and (i, j) /∈ E
1 if i = j or (i, j) ∈ E

and for k ≥ 1

t(k)ij = t(k−1)
ij ∨

(
t(k−1)
ik ∧ t(k−1)

kj

)
We compute the matrices T(k) =

(
t(k)ij

)
in order of

increasing k.
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TRANSITIVE-CLOSURE(G)

1: n = |G.V|
2: let T(0) = (t(0)ij ) be a new

n×n matrix
3: for i = 1 to n do
4: for j = 1 to n do
5: if i == j ot (i, j) ∈ G.E

then
6: t(0)ij = 1
7: else

8: t(0)ij = 0
9: for k = 1 to n do

10: let T(k) = (t(k)ij ) be a new
n×n matrix

11: for i = 1 to n do
12: for j = 1 to n do
13:

t(k)ij = t(k−1)
ij ∨

(
t(k−1)
ik ∧ t(k−1)

kj

)
14: return T(n)

The TRANSITIVE-CLOSURE procedure runs in Θ
(
n3) times.
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Example

1 2

4 3

T .0/ D

�
1 0 0 0

0 1 1 1

0 1 1 0

1 0 1 1

�
T .1/ D

�
1 0 0 0

0 1 1 1

0 1 1 0

1 0 1 1

�
T .2/ D

�
1 0 0 0

0 1 1 1

0 1 1 1

1 0 1 1

�

T .3/ D

�
1 0 0 0

0 1 1 1

0 1 1 1

1 1 1 1

�
T .4/ D

�
1 0 0 0

1 1 1 1

1 1 1 1

1 1 1 1

�
Figure 25.5 A directed graph and the matrices T .k/ computed by the transitive-closure algorithm.
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Johnson’s algorithm for sparse graphs

Johnson’s algorithm uses the technique of reweighting:
If all edge weights w in a graph G = (V,E) are nonnegative,

we can find shortest paths between all pairs of vertices by
running Dijkstra’s algorithm once from each vertex

with the Fibonacci-heap min-priority queue, the running
time of this all-pairs algorithm is O

(
V2 lgV+VE

)
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Johnson’s algorithm for sparse graphs

The new set of edge weights ŵ must satisfy two important:
properties:
▶ For all pairs of vertices u,v ∈ V, a path p is a shortest path

from u to v using weight function w if and only if p is also
a shortest path from u to v using weight function ŵ

▶ For all edges (u,v) , the new weight ŵ(u,v) is nonnegative
We use δ to denote shortest-path weights derived from

weight function w and δ̂ to denote shortest-path weights
derived from weight function ŵ.
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Lemma 25.1 Reweighting does not change shortest
paths

Given a weighted, directed graph G = (V,E) with weight
function w : E → R, let h : V → R be any function mapping
vertices to real numbers. For each edge (u,v) ∈ E,define

ŵ(u,v) = w(u,v)+h(u)−h(v)

Let p =< v0,v1, ...,vk > be any path from vertex v0 to
vertex vk. w(p) = δ (v0,vk) if and only if ŵ(p) = δ̂ (v0,vk) . G
has a negative-weight cycle using weight function w if and only
if G has a negative-weight cycle using weight function ŵ.
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Producing nonnegative weights by reweighting

Our goal is to ensure ŵ(u,v) to be nonnegative for all edges
(u,v) ∈ E.

Given a weighted, directed graph G = (V,E) with weight
function w : E → R ,we make a new graph G′ = (V′,E′), where
V′ = V∪{s} for some new vertex s /∈ V and
E′ = E∪{(s,v) : v ∈ V}.

Weight function w is extended so that w(s,v) = 0 for all
v ∈ V

No shortest paths in G�, other than those with source s,
contain s.

Therefore, G′ has no negative-weight cycles if and only if G
has no negative-weight cycles.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 38 / 45



Outline
25.1 Shortest paths and matrix multiplication

25.2 The Floyd-Warshall algorithm
25.3 Johnson’s algorithm for sparse graphs

Reweighting
Computing all-pairs shortest paths

Example
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Figure (b) shows the graph G′ from Figure (a) with
reweighted edges.
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Producing nonnegative weights by reweighting

Suppose that G and G′ have no negative-weight cycles.
Let us define h(v) = δ (s,v) for all v ∈ V′

By the triangle inequality, h(v)≤ h(u)+w(u,v) for all
edges (u,v) ∈ E′. And we have satisfied the second property:

ŵ(u,v) = w(u,v)+h(u)−h(v)≥ 0
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Figure (b) shows the graph G′ from Figure (a) with
reweighted edges.
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Computing all-pairs shortest paths

Johnson’s algorithm to compute all-pairs shortest paths
uses the Bellman-Ford algorithm and Dijkstra’s algorithm as
subroutines.

It assumes implicitly that the edges are stored in adjacency
lists.

The algorithm returns the usual |V|× |V| matrix D = dij ,
where dij = δ (i, j), or it reports that the input graph contains a
negative-weight cycle.

We assume that the vertices are numbered from 1 to |V|.
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Johnsons algorithm

JOHNSON(G,w)
1: compute G′ where G′.V=G.V∪{s}, G′.E=G.E∪{(s,v) : v∈G.V} and w(s,v) = 0

for all v ∈ G.V
2: if BELLMAN-FORD(G′,w,s) == False then
3: print “the input graph contains a negative-weight cycle
4: else
5: for each vertex v ∈ G′.V do
6: set h(v) to the value of δ (s,v) computed by the Bellman-Ford algorithm
7: for each edge (u,v) ∈ G′.E do // reweight each edge
8: ŵ(u,v) = w(u,v)+h(u)−h(v)
9: let D = (duv) to be a new n×n matrix
10: for each vertex u ∈ G.V do
11: run DIJKSTRA(G,ŵ,u) to compute δ̂ (u,v) for all v ∈ G.V
12: for each vertex v ∈ G.V do
13: duv = δ̂ (u,v)+h(v)−h(u) // compute δ (u,v)
14: return D
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Example
Take each node as source u marked black. In each node v,
record δ̂ (u,v)/δ (u,v), where δ (u,v) = δ̂ (u,v)+h(v)−h(u)
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Johnsons algorithm running time

If we implement the min-priority queue in Dijkstra’s
algorithm by a Fibonacci heap, Johnson’s algorithm runs in
O(V2 lgV+VE)

The simpler binary minheap implementation yields a
running time of O(VE lgV),which is still asymptotically faster
than the Floyd-Warshall algorithm if the graph is sparse.
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