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Flow Networks and Flows

A flow network G = (V,E) is a directed graph in which each edge
(u,v) ∈ E has a nonnegative capacity c(u,v)≥ 0.We further require
that if E contains an edge (u,v),then there is no edge (v,u) in the
reverse direction. If (u,v) /∈ E, then for convenience we define
c(u,v) = 0, and we disallow self-loops.
We distinguish two vertices in a flow network: a source s and a sink t.
For convenience, we assume that each vertex lies on some path from
the source to the sink. That is, for each vertex v ∈ V , the flow network
contains a path s ; v ; t. The graph is therefore connected and, since
each vertex other than s has at least one entering edge, |E| ≥ |V|−1.
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Flow Networks and Flows

A flow in G is a real-valued function f : V ×V →R that is satisfies the
following two properties:
▶ Capacity constraint: For all u,v ∈ V , we require

0 ≤ f (u,v)≤ c(u,v).
▶ Flow conservation: For all u ∈ V −{s, t}, we require

∑
v∈V

f (v,u) = ∑
v∈V

f (u,v)

When (u,v) /∈ E, there can be no flow from u to v, and
f (u,v) = 0.
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Flow Networks and Flows

We call the nonnegative quantity f (u,v) the flow from vertex u to
vertex v. The value |f | of a flow f is defined as
|f |= ∑v∈V f (s,v)−∑v∈V f (v,s), that is, the total flow out of the source
minus the flow into the source. Typically, a flow network will not
have any edges into the source, and the flow into the source, given by
the summation ∑v∈V f (v,s), will be 0. We include it, however, because
when we introduce residual networks later in this chapter, the flow
into the source will become significant. In the maximum-flow
problem, we are given a flow network G with source s and sink t, and
we wish to find a flow of maximum value.
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Flow Networks and Flows

Left: A flow Network G
Right: A flow in G

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 6 / 43



26.1 Flow Networks
26.2 The Ford-Fulkerson Method

26.3 Maximum Bipartite Matching

Flow Networks and Flows
Antiparallel Edge
Multiple Sources and Sinks

Antiparallel Edge

Suppose that the trucking firm offered Lucky Puck the opportunity to
lease space for 10 crates in trucks going from Edmonton to Calgary. It
would seem natural to add this opportunity to our graph. This network
suffers from one problem, however: it violates our original
assumption that if an edge (v1,v2) ∈ E, then (v2,v1) /∈ E. We call the
two edges (v1,v2) and (v2,v1) antiparallel.
We must transform the network into an equivalent one containing no
antiparallel edges. We choose one of the two antiparallel edges, in this
case (v1,v2) , and split it by adding a new vertex v′ and replacing edge
(v1,v2) with the pair of edges (v1,v′) and (v′,v2)
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Networks with Multiple Sources and Sinks

A maximum-flow problem may have several sources and sinks, rather
than just one of each. The Lucky Puck Company, for example, might
actually have a set of m factories {S1,S2, . . . ,Sm} and a set of n
warehouses {t1, t2, . . . , tn}. Fortunately, this problem is no harder than
ordinary maximum flow.
We add a supersource s and add a directed edge (s,si) with capacity
c(s,si) = ∞ for each i = 1,2, . . . ,m. We also create a new supersink t
and add a directed edge (ti, t) with capacity c(ti, t) = ∞ for each
i = 1,2, . . . ,n.
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The Ford-Fulkerson Method

The Ford-Fulkerson method iteratively increases the value of the flow.
We start with f (u,v) = 0 for all u,v ∈ V , giving an initial flow of
value 0. At each iteration, we increase the flow value in G by finding
an “augmenting path” in an associated “residual network” Gf .
Once we know the edges of an augmenting path in Gf , we can easily
identify specific edges in G for which we can change the flow so that
we increase the value of the flow. Although each iteration of the
Ford-Fulkerson method increases the value of the flow, we shall see
that the flow on any particular edge of G may increase or decrease.
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The Ford-Fulkerson Method

FORD-FULKERSON-METHOD(G,s, t)
1: initialize flow f to 0
2: while there exists an augmenting path p in the residual network Gf
3: augment flow f along p
4: return f

In order to implement and analyze the Ford-Fulkerson method, we
need to introduce several additional concepts.
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Residual Networks

Intuitively, given a flow network G and a flow f , the residual network
Gf consists of edges with capacities that represent how we can change
the flow on edges of G. An edge of the flow network can admit an
amount of additional flow equal to the edge’s capacity minus the flow
on that edge. If that value is positive, we place that edge into Gf with
a “residual capacity” of cf (u,v) = c(u,v)− f (u,v). The only edges of
G that are in Gf are those that can admit more flow; those edges (u,v)
whose flow equals their capacity have cf (u,v) = 0, and they are not in
Gf .
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Residual Networks

The residual network Gf may also contain edges that are not in G,
however. As an algorithm manipulates the flow, with the goal of
increasing the total flow, it might need to decrease the flow on a
particular edge.
In order to represent a possible decrease of a positive flow f (u,v) on
an edge in G, we place an edge (v,u) into Gf with residual capacity
cf (v,u) = f (u,v). These reverse edges in the residual network allow
an algorithm to send back flow it has already sent along an edge.
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Residual Networks

More formally, suppose that we have a flow network G = (V,E) with
source s and sink t. Let f be a flow in G, and consider a pair of
vertices u,v ∈ V . We define the residual capacity cf (u,v) by

cf (u,v) =


c(u,v)− f (u,v) if (u,v) ∈ E
f (v,u) if (v,u) ∈ E
0 otherwise

Given a flow network G = (V,E) and a flow f , the residual network
of G induced by f is Gf =

(
V,Ef

)
, where

Ef =
{
(u,v) ∈ V ×V : cf (u,v)> 0

}
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Residual Networks

The edges in Ef are either edges in E or their reversals, and thus∣∣Ef
∣∣≤ 2|E|.

Observe that the residual network Gf is similar to a flow network with
capacities given by cf . It does not satisfy our definition of a flow
network because it may contain both an edge (u,v) and its reversal
(v,u). Other than this difference, a residual network has the same
properties as a flow network, and we can define a flow in the residual
network as one that satisfies the definition of a flow, but with respect
to capacities cf in the network Gf .
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Residual Networks

A flow in a residual network provides a roadmap for adding flow to
the original flow network. If f is a flow in G and f ′ is a flow in the
corresponding residual network Gf , we define f ↑ f ′, the
augmentation of flow f by f ′, to be a function from V ×V to R,
defined by

(
f ↑ f ′

)
(u,v) =

{
f (u,v)+ f ′(u,v)− f ′(v,u) if (u,v) ∈ E
0 otherwise
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Residual Networks

Lemma 26.1: Let G = (V,E) be a flow network with source s and
sink t, and let f be a flow in G. Let Gf be the residual network of G
induced by f , and let f ′ be a flow in Gf . Then the function f ↑ f ′ is a
flow in G with value |f ↑ f ′|= |f |+ |f ′|.
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Augmenting Paths

Given a flow network G = (V,E) and a flow f , an augmenting path p
is a simple path from s to t in the residual network Gf . By the
definition of the residual network, we may increase the flow on an
edge (u,v) of an augmenting path by up to cf (u,v) without violating
the capacity constraint on whichever of (u,v) and (v,u) is in the
original flow network G.
We call the maximum amount by which we can increase the flow on
each edge in an augmenting path p the residual capacity of p, given by

cf (p) = min
{

cf (u,v) : (u,v) is on p
}
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Augmenting Paths

Lemma 26.2: Let G = (V,E) be a flow network, let f be a flow in G,
and let p be an augmenting path in Gf . Define a function
fp : V ×V → R by

fp(u,v) =
{

cf (p) if (u,v) is on p
0 otherwise

Then, fp is a flow in Gf with value |fp|= cf (p)> 0.
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Augmenting Paths

Corollary 26.3: Let G = (V,E) be a flow network, let f be a flow in
G, and let p be an augmenting path in Gf . Suppose that we augment f
by fp. Then the function f ↑ fp is a flow in G with value
|f ↑ fp|= |f |+ |fp|> |f |.
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Cuts of Flow Networks

A cut (S,T) of flow network G = (V,E) is a partition of V into S and
T = V −S such that s ∈ S and t ∈ T . If f is a flow, then the netflow
f (S,T) across the cut (S,T) is defined to be

f (S,T) = ∑
u∈S

∑
v∈T

f (u,v)− ∑
u∈S

∑
v∈T

f (v,u)

The capacity of the cut (S,T) is

c(S,T) = ∑
u∈S

∑
v∈T

c(u,v)

A minimum cut of a network is a cut whose capacity is minimum
over all cuts of the network.
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Cuts of Flow Networks

f (S,T) = 12−4+11 = 19; c(S,T) = 12+14 = 26.
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Cuts of Flow Networks

Lemma 26.4: Let f be a flow in a flow network G with source s and
sink t, and let (S,T) be any cut of G. Then the net flow across (S,T) is
f (S,T) = |f |.
Corollary 26.5: The value of any flow f in a flow network G is
bounded from above by the capacity of any cut of G.
Theorem 26.6 (Max-flow min-cut theorem):
If f is a flow in a flow network G = (V,E), with source s and sink t,
then the following conditions are equivalent:
▶ f is a maximum flow in G.
▶ The residual network Gf contains no augmenting paths.
▶ |f |= c(S,T) for some cut (S,T) of G.
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The basic Ford-Fulkerson Algorithm

FORD-FULKERSON(G,s, t)
1: for each edge(u,v) ∈ G.E do
2: (u,v).f=0
3: while there exists a path p from s to t in the residual network Gf do
4: cf (p) = min{cf (u,v) : (u,v)is in p}
5: for each edge u,v in p do
6: if (u,v) ∈ E then
7: (u,v).f = (u,v).f + cf (p)
8: else
9: (v,u).f = (v,u).f − cf (p)
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Analysis of Ford-Fulkerson

The running time of FORD-FULKERSON depends on how the
augmenting path p in line 3 is determined.
If it is chosen poorly, the algorithm might not even terminate.
If the augmenting path is chosen by using a breadth-first search, the
algorithm runs in polynomial time.
Most often in practice, the maximum-flow problem arises with
integral capacities. (If the capacities are rational numbers, we can
apply an appropriate scaling transformation to make them all integral.)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 29 / 43



26.1 Flow Networks
26.2 The Ford-Fulkerson Method

26.3 Maximum Bipartite Matching

Overview
Residual Networks
The basic Ford-Fulkerson Algorithm

Analysis of Ford-Fulkerson

Lines 1-2 take time Θ(E).
The while loop of lines 3-8 is executed at most |f ∗| times, since the
flow value increases by at least one unit in each iteration.
Assumed a data structure corresponding a directed graph
G′ = (V,E′), where E′ = {(u,v) : (u,v) ∈ E or (v,u) ∈ E}
Given a flow f on G, the edges in the residual network Gf consist of
all edges (u,v) of G′ such that cf (u,v)> 0.
The time to find a path in a residual network is therefore
O(V +E′) = O(E) if we use either depth-first search or breadth-first
search.
Thus the total running time of FORD-FULKERSON is O(E|f ∗|)
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the optimal flow value |f ∗| is large:
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The Edmonds-Karp Algorithm

We can improve the bound on FORD-FULKERSON by finding the
augmenting path p in line 3 with a breadth-first search. That is, we
choose the augmenting path as a shortest path from s to t in the
residual network, where each edge has unit distance (weight).
We call the Ford-Fulkerson method so implemented the
Edmonds-Karp algorithm. We now prove that the Edmonds-Karp
algorithm runs in O(VE2) time.
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The Edmonds-Karp Algorithm

Lemma 26.7: If the Edmonds-Karp algorithm is run on a flow
network G = (V,E) with source s and sink t, then for all vertices
v ∈ V −{S, t}, the shortest-path distance δf (s,v) in the residual
network Gf increases monotonically with each flow augmentation.
Theorem 26.8: If the Edmonds-Karp algorithm is run on a flow
network G = (V,E) with source s and sink t, then the total number of
flow augmentations performed by the algorithm is O(VE).
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The Edmonds-Karp Algorithm

Because we can implement each iteration of Ford-Fulkerson in O(E)
time when we find the augmenting path by breadth-first search, the
total running time of the Edmonds-Karp algorithm is O(VE2).

We shall see that push-relabel algorithms can yield even better
bounds. The algorithm of Section 26.4 gives a method for achieving
an O(V2E) running time, which forms the basis for the O(V3)-time
algorithm of Section 26.5.
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Maximum Bipartite Matching

This section presents one such problem: finding a maximum matching
in a bipartite graph.
In order to solve this problem, we shall take advantage of an
integrality property provided by the Ford-Fulkerson method. We shall
also see how to use the Ford-Fulkerson method to solve the
maximum-bipartite-matching problem on a graph G = (V,E)
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Bipartite Graph

The vertex set can be partitioned into V = L∪R, where L and R are
disjoint and all edges in E go between L and R.
We assume that every vertex in V has at least one incident edge.

L R L R

s t

(a) (c)

L R

(b)
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Finding a maximum bipartite matching

Use the Ford-Fulkerson method to find a maximum matching in an
undirected bipartite graph G = (V,E) in time polynomial in |V| and
|E|.
The trick is to construct a flow network in which flows correspond to
matchings, as shown in Figure (c).
We define the corresponding flow network G′ = (V ′,E′) for the
bipartite graph G:

source s and sink t be new vertices not in V , V ′ = V ∪{s, t}
If V = L∪U, the directed edges of G′ is

E′ = {(s,u) : u ∈ L}∪{(u,v) : (u,v) ∈ E}∪{(v, t) : v ∈ R}
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The maximum-bipartite-matching problem

To complete the construction, we assign unit capacity to each edge in
E′. Since each vertex in V has at least one incident edge, |E| ≥ |V|/2:
|E| ≤ |E′|= |E|+ |V| ≤ 3|E|,and so |E′|= Θ(E)
The following lemma shows that a matching in G corresponds
directly to a flow in G′s corresponding flow network G′.
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Lemma 26.9

Let G = (V,E) be a bipartite graph with vertex partition V = L∪R,
and let G′ = (V ′,E′) be its corresponding flow network. If M is a
matching in G, then there is an integervalued flow f in G′ with value
|f |= |M|.
Conversely, if f is an integer-valued flow in G′, then there is a
matching M in G with cardinality |M|= |f |.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 40 / 43



26.1 Flow Networks
26.2 The Ford-Fulkerson Method

26.3 Maximum Bipartite Matching

Overview
The maximum-bipartite-matching problem
Finding a maximum bipartite matching

Theorem 26.10 (Integrality theorem)

If the capacity function c takes on only integral values, then the
maximum flow f produced by the Ford-Fulkerson method has the
property that |f | is an integer. Moreover, for all vertices u and v, the
value of f (u,v) is an integer.
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Corollary 26.11

The cardinality of a maximum matching M in a bipartite graph G
equals the value of a maximum flow f in its corresponding flow
network G′.
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Maximum bipartite matching

Given a bipartite undirected graph G, we can find a maximum
matching by the following steps:
▶ creating the flow network G′

▶ running the Ford-Fulkerson method, and directly obtaining a
maximum matching M from the integer-valued maximum flow f
found.

Since any matching in a bipartite graph has cardinality at most
min(L,R) = O(V), the value of the maximum flow in G′ is O(V)
So we can find a maximum matching in a bipartite graph in time
O(VE′) = O(VE)( since |E′|= Θ(E))
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