
Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

Introduction to Algorithms
Chapter 32 : String Matching

Xiang-Yang Li and Haisheng Tan

School of Computer Science and Technology
University of Science and Technology of China (USTC)

Fall Semester 2024

1 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

Outline of Topics

1 Overview

2 The Naive Algorithm : Brute Force

3 The Rabin-Karp Algorithm

4 String matching with finite automata

5 The Knuth-Morris-Pratt Algorithm

2 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

Table of Contents

1 Overview

2 The Naive Algorithm : Brute Force

3 The Rabin-Karp Algorithm

4 String matching with finite automata

5 The Knuth-Morris-Pratt Algorithm

3 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

Definition of String Matching Problem

String-matching Problem:
1 1. Find one occurrence of a pattern in a text ;
2 2. Find out all the occurrences of a pattern in a text.

Applications require two kinds of solution depending on which string,
the pattern or the text, is given first.

1 1. Algorithms based on the use of automata or combinatorial
properties of strings are commonly implemented to preprocess
the pattern and solve the first kind of problem.

2 2. The notion of indexes realized by trees or automata is used in
the second kind of solutions.

4 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

String Matching

Word processors

Virus scanning

Text information retrieval systems (Lexis, Nexis)

Digital libraries

Natural language processing

Specialized databases

Computational molecular biology

Web search engines

Bioinformatics

5 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

An Example of String Matching

6 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

Notation and Terminology

Parameters

T: the text is an array T[1..n] of length n

P: the pattern is an array P[1..m] of length m.

n: the length of the text.

m: the length of the pattern.
Typically, n >> m.

∑: the alphabet.

=: suffix. e.g., cca = bcca

σ(x) = max{k : Pk = x}: suffix function

7 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

The Basic Idea of String Matching

sliding window mechanism
1. Scan the text T with a window of the length of m;

2. Firstly align the pattern with the left end of the text;

3. Compare the P with the corresponding character of the T;

4. Move the window to the right after each successful match or
each mismatch;

5. Repeat steps 3 and 4 until the right end of the window is
beyond the right of the text.

When comparing, the order can be from left to right, right to left, or
even in a specific order.

8 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

Table of Contents

1 Overview

2 The Naive Algorithm : Brute Force

3 The Rabin-Karp Algorithm

4 String matching with finite automata

5 The Knuth-Morris-Pratt Algorithm

9 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

Brute Force

Brute force
Check for pattern starting at every text position, trying to match any
substring of length m in the text with the pattern.

Analysis of brute force:

running time depends on pattern and text

can be slow when strings repeat themselves

worst case: O(mn) comparisons

too slow when m and n are large.

10 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

Brute Force

NATIVE-STRING-MATCHING(T,P)
1: n = T.length
2: m = P.length
3: for s = 0 to n−m do
4: if P[1..m] == T[s+1..s+m] then
5: print “Pattern occurs with shift” s

11 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

Brute Force

Time Complexity: O((n−m+1)m). Why is it slow?
NATIVE-STRING-MATCHING(T,P)
1: n = T.length
2: m = P.length
3: for s = 0 to n−m do
4: if P[1..m] == T[s+1..s+m] then
5: print “Pattern occurs with shift” s

12 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

Table of Contents

1 Overview

2 The Naive Algorithm : Brute Force

3 The Rabin-Karp Algorithm

4 String matching with finite automata

5 The Knuth-Morris-Pratt Algorithm

13 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

The Basic Idea of Rabin-Karp Algorithm

Basic Idea of Rabin-Karp Algorithm
A string search algorithm which compares a string’s hash values,
rather than the strings themselves. For efficiency, the hash value of the
next position in the text is easily computed from the hash value of the
current position.

If the hash values are unequal, the algorithm will calculate the
hash value for next M-character sequence.

If the hash values are equal, the algorithm will compare the
pattern and the M-character sequence.

In this way, there is only one comparison per text subsequence,
and character matching is only needed when hash values match.

14 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

How Rabin-Karp works

An hashing function hash should have the following properties:
Efficiently computable
Highly discriminating for strings
ts+1 = hash(T[s+2, ...,s+m+1]) must be easily computable
from ts = hash(T[s+1, ...,s+m]) and T[s+m+1]
hash(T[s+2, ...,s+m+1]) =
rehash(T[s+1],T[s+m+1],hash(T[s+1, ...,s+m]))

Choosing hash(k) = k mod q, q is a large prime.

15 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

Example of R.K. Algorithm

16 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

How Rabin-Karp works

Let d = |∑ |, define a function ord: ∑ →{0,1,2, ...,d−1}
For a word w of length m in the text T , let hash(w) be defined as
follows:

Let: x[i] = ord(w[i]),1 ≤ i ≤ m
hash(w[1..m]) =
(x[1] ·dm−1 + x[2] ·dm−2 + · · ·+ x[m] ·d0) mod q,where q is a
large number, hash(w[1..m]) is an integer.
hash(w[2..m+1]) =
(x[2] ·dm−1 + x[3] ·dm−2 + · · ·+ x[m+1] ·d0) mod q =
((hash(w[1..m])− x[1] ·dm−1) ·d+ x[m+1] ·d0) mod q.
rehash(a,b, ts) = ((ts −a ·h) ·d+b) mod q,where dm−1 mod q
can be calculated in advance and recorded as h.

17 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

Rabin-Karp Algorithm Pseudocode

RK(P,T,d,q)
1: n = T.length, m = P.length, h = dm−1 mod q;
2: p = 0, t0 = 0;
3: for i = 1 to m do //pre-processing
4: p = ((p ·d)+ord(P[i])) mod q // hash(P[1..m])
5: t0 = ((t0 ·d)+ord(T[i])) mod q // hash(T[1..m])

6: for s = 0 to n−m do // matching, (n−m+1) times
7: if p == t && P[1..m] == T[s+1..s+m] then // Θ(m)
8: print “Pattern occurs with shift” s
9: if s < n−m then // compute ts+1 based on ts

10: ts+1 = (ts −ord(T[s+1]) ·h) ·d+ord(T[s+m+1])) mod q

18 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

Rabin-Karp Algorithm Analysis

The preprocessing phase of the Rabin-Karp algorithm consists in
computing hash(P). It can be done in constant space and O(m)
time.

During searching phase, it is enough to compare hash(P) with
hash(T[j..j+m−1]) for 1 ≤ j ≤ n−m+1.

If an equality is found, it is still necessary to check the equality
P = T[j..j+m−1] character by character.

The time complexity of the Rabin-Karp algorithm is
Θ((n−m+1)m) = Θ(mn) (when searching for am in an for
instance). Its expected number of text character comparisons is
O(n+m) = O(n), when the valid points are small, e.g., O(1).

19 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

Table of Contents

1 Overview

2 The Naive Algorithm : Brute Force

3 The Rabin-Karp Algorithm

4 String matching with finite automata

5 The Knuth-Morris-Pratt Algorithm

20 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

Finite Automata

Finite Automata
A finite automaton is a quintuple (Q,Σ,δ ,s,F):

Q: the finite set of states
Σ: the finite input alphabet
δ : the transition function from Q×Σ to Q // deterministic FA

s ∈ Q: the start state

F ⊂ Q: the set of final (accepting) states

21 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

The Final-State Function

A finite automaton M induces a final-state function φ : Σ⋆ → Q
such that φ(w) is the state M ends up in after reading the string
w. Thus, M accepts a string w if and only if φ(w) ∈ F.

We define the function φ recursively, using transition function δ :

φ(ε) = q0

φ(wa) = δ (φ(w),a) for w ∈ Σ
⋆,a ∈ Σ

22 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

How it works

A finite automaton accepts strings in
a specific language. It begins in state q0
and reads characters one at a time from
the input string. It makes transitions
based on these characters. When it
reaches the end of the tape, if it is in one
of the accept states, that string is accepted
by the FA.
e.g., transition function: δ (0,a) = 1

final-state function: φ(ababa) = 1

This FA accepts those strings
that end in an odd number of a’s.

23 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

The Suffix Function

In order to properly search for
the string, the program must define
a suffix function (σ) which
checks to see how much of what it
is reading matches the search
string at any given moment.

Later we will see the
equivalence between φ and σ .

σ(x) = max{k : Pk = x}
P = abaabc

P1 = a

P2 = ab

P3 = aba

P4 = abaa

σ(abbaba) = 3 //aba

Pk denotes the prefix of length k
of string P.

24 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

String-Matching Automata

For any pattern P of length m, we can define its string matching
automata:

Q = {0, ...,m} (state)

q0 = 0 (start state)

F = {m} (accepting state)

δ (q,a) = σ(Pqa)

25 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

Example

δ (q,a) = σ(Pqa)

26 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

String-Matching Automata

The transition function chooses the next state to maintain the
invariant:

φ(Ti) = σ(Ti)

After scanning in i characters, the state number is the longest
prefix of P that is also a suffix of Ti.

27 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

Finite-Automaton-Matcher

The simple loop structure
implies a running time for a
string of length n is O(n).

However: this is only the
running time for the actual
string matching. It does not
include the time it takes to
compute the transition
function.

FINITE-AUTOMATON-MATCHER(T,δ ,m)
1: n = T.length
2: q = 0
3: for i = 1 to n do
4: q = δ (q,T[i])
5: if q==m then
6: s = i−m
7: print “Pattern occurs at shift” s

28 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

Computing the Transition Function

COMPUTE-TRANSITION-FUNCTION(P,Σ)
1: m = P.length
2: for q = 0 to m do
3: for each character a ∈ Σ do
4: k = min(m+1,q+2)
5: repeat
6: k = k−1
7: until Pk = Pqa
8: δ (q,a) = k
9: return δ

This procedure computes δ (q,a)
according to its definition. The
loop on line 2 cycles through all
the states, while the nested loop
on line 3 cycles through the
alphabet. Thus all state-character
combinations are accounted for.
Lines 4-7 set δ (q,a) to be the
largest k such that Pk = Pqa.

29 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

Running Time of Compute-Transition-Function

Running Time: O(m3|Σ|)
Outer loop: m|Σ|
Inner loop: runs at most m+1

Pk = Pqa: requires up to m comparisons

30 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

Improving Running Time

Much faster procedures for computing the transition function
exist. The time required to compute δ based on P can be
improved to O(m|Σ|)
The time it takes to find the string is linear: O(n).

This brings the total runtime to:O(n+m|Σ|).
Not bad if your string is fairly small relative to the text you are
searching in.

31 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

Table of Contents

1 Overview

2 The Naive Algorithm : Brute Force

3 The Rabin-Karp Algorithm

4 String matching with finite automata

5 The Knuth-Morris-Pratt Algorithm

32 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

The KMP Algorithm

Basic Idea of KMP
The prefix function π encapsulates knowledge about how the pattern
matches against shifts of itself. We take advantage of this information
to avoid testing useless shifts.

33 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

An Example of KMP Algorithm

34 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

The KMP Algorithm

The pointer only shift to the right and will not retreat to the left.

When test the T[s+1, ...s+q+1], P[1..q] = T[s+1, ...s+q], but
P[q+1] ̸= T[s+q+1].

Given that pattern characters P[1..q] match text characters
T[s+1..s+q], what is the least shift s′ > s such that for some
k < q,P[1..k] = T[s′+1..s′+ k], where s′+ k = s+q?

Given a pattern P[1..m], the prefix function for the pattern P is
the function π : {1,2, ...,m}→ {0,1, ...m−1} such that
π[q] = max{k : k < q and Pk = Pq}.

35 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

An Example of KMP Algorithm

36 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

The KMP Algorithm

COMPUTE-PREFIX-FUNCTION(P)
1: m = P.length
2: let π[1..m] be a new array
3: π[1] = 0
4: k = 0
5: for q = 2 to m do
6: while k > 0 and P[k+1] ̸= P[q] do
7: k = π[k]
8: if P[k+1] == P[q] then
9: k = k+1

10: π[q] = k
11: return π

The running
time is Θ(m)

37 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

The KMP Algorithm
KMP-MATCHER(T,P)
1: n = T.length
2: m = P.length
3: π = Compute-Prefix-Function(P)
4: q = 0 //number of characters matched
5: for i = 1 to n do //scan the text from left to right
6: while q > 0 and P[q+1] ̸= T[i] do
7: q = π[q]
8: if P[q+1] == T[i] then
9: q = q+1 //next character matches

10: if q == m then //is all of P matches
11: print “Pattern occurs with shift” i−m
12: q = π[q] //look for the next match

The running
time is Θ(n)

38 / 39

Outline
Overview

The Naive Algorithm : Brute Force
The Rabin-Karp Algorithm

String matching with finite automata
The Knuth-Morris-Pratt Algorithm

Summary of KMP

Build π from pattern

Run π on text

O(m+n) worst case string search
Good efficiency for patterns and texts with much repetition

binary files
graphics formats

Less useful for text strings.
Online algorithm

virus scanning
Internet spying

39 / 39

	Outline
	Overview
	The Naive Algorithm : Brute Force
	The Rabin-Karp Algorithm
	String matching with finite automata
	The Knuth-Morris-Pratt Algorithm

