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Definition of String Matching Problem

String-matching Problem:
1 1. Find one occurrence of a pattern in a text ;
2 2. Find out all the occurrences of a pattern in a text.

Applications require two kinds of solution depending on which string,
the pattern or the text, is given first.

1 1. Algorithms based on the use of automata or combinatorial
properties of strings are commonly implemented to preprocess
the pattern and solve the first kind of problem.

2 2. The notion of indexes realized by trees or automata is used in
the second kind of solutions.
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String Matching

Word processors

Virus scanning

Text information retrieval systems (Lexis, Nexis)

Digital libraries

Natural language processing

Specialized databases

Computational molecular biology

Web search engines

Bioinformatics
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An Example of String Matching
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Notation and Terminology

Parameters

T: the text is an array T[1..n] of length n

P: the pattern is an array P[1..m] of length m.

n: the length of the text.

m: the length of the pattern.
Typically, n >> m.

∑: the alphabet.

=: suffix. e.g., cca = bcca

σ(x) = max{k : Pk = x}: suffix function
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The Basic Idea of String Matching

sliding window mechanism
1. Scan the text T with a window of the length of m;

2. Firstly align the pattern with the left end of the text;

3. Compare the P with the corresponding character of the T;

4. Move the window to the right after each successful match or
each mismatch;

5. Repeat steps 3 and 4 until the right end of the window is
beyond the right of the text.

When comparing, the order can be from left to right, right to left, or
even in a specific order.
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Brute Force

Brute force
Check for pattern starting at every text position, trying to match any
substring of length m in the text with the pattern.

Analysis of brute force:

running time depends on pattern and text

can be slow when strings repeat themselves

worst case: O(mn) comparisons

too slow when m and n are large.
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Brute Force

NATIVE-STRING-MATCHING(T,P)
1: n = T.length
2: m = P.length
3: for s = 0 to n−m do
4: if P[1..m] == T[s+1..s+m] then
5: print “Pattern occurs with shift” s
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Brute Force

Time Complexity: O((n−m+1)m). Why is it slow?
NATIVE-STRING-MATCHING(T,P)
1: n = T.length
2: m = P.length
3: for s = 0 to n−m do
4: if P[1..m] == T[s+1..s+m] then
5: print “Pattern occurs with shift” s
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The Basic Idea of Rabin-Karp Algorithm

Basic Idea of Rabin-Karp Algorithm
A string search algorithm which compares a string’s hash values,
rather than the strings themselves. For efficiency, the hash value of the
next position in the text is easily computed from the hash value of the
current position.

If the hash values are unequal, the algorithm will calculate the
hash value for next M-character sequence.

If the hash values are equal, the algorithm will compare the
pattern and the M-character sequence.

In this way, there is only one comparison per text subsequence,
and character matching is only needed when hash values match.
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How Rabin-Karp works

An hashing function hash should have the following properties:
Efficiently computable
Highly discriminating for strings
ts+1 = hash(T[s+2, ...,s+m+1]) must be easily computable
from ts = hash(T[s+1, ...,s+m]) and T[s+m+1]
hash(T[s+2, ...,s+m+1]) =
rehash(T[s+1],T[s+m+1],hash(T[s+1, ...,s+m]))

Choosing hash(k) = k mod q, q is a large prime.
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How Rabin-Karp works

Let d = |∑ |, define a function ord: ∑ →{0,1,2, ...,d−1}
For a word w of length m in the text T , let hash(w) be defined as
follows:

Let: x[i] = ord(w[i]),1 ≤ i ≤ m
hash(w[1..m]) =
(x[1] ·dm−1 + x[2] ·dm−2 + · · ·+ x[m] ·d0) mod q,where q is a
large number, hash(w[1..m]) is an integer.
hash(w[2..m+1]) =
(x[2] ·dm−1 + x[3] ·dm−2 + · · ·+ x[m+1] ·d0) mod q =
((hash(w[1..m])− x[1] ·dm−1) ·d+ x[m+1] ·d0) mod q.
rehash(a,b, ts) = ((ts −a ·h) ·d+b) mod q,where dm−1 mod q
can be calculated in advance and recorded as h.
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Rabin-Karp Algorithm Pseudocode

RK(P,T,d,q)
1: n = T.length, m = P.length, h = dm−1 mod q;
2: p = 0, t0 = 0;
3: for i = 1 to m do //pre-processing
4: p = ((p ·d)+ord(P[i])) mod q // hash(P[1..m])
5: t0 = ((t0 ·d)+ord(T[i])) mod q // hash(T[1..m])

6: for s = 0 to n−m do // matching, (n−m+1) times
7: if p == t && P[1..m] == T[s+1..s+m] then // Θ(m)
8: print “Pattern occurs with shift” s
9: if s < n−m then // compute ts+1 based on ts

10: ts+1 = (ts −ord(T[s+1]) ·h) ·d+ord(T[s+m+1])) mod q
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Rabin-Karp Algorithm Analysis

The preprocessing phase of the Rabin-Karp algorithm consists in
computing hash(P). It can be done in constant space and O(m)
time.

During searching phase, it is enough to compare hash(P) with
hash(T[j..j+m−1]) for 1 ≤ j ≤ n−m+1.

If an equality is found, it is still necessary to check the equality
P = T[j..j+m−1] character by character.

The time complexity of the Rabin-Karp algorithm is
Θ((n−m+1)m) = Θ(mn) (when searching for am in an for
instance). Its expected number of text character comparisons is
O(n+m) = O(n), when the valid points are small, e.g., O(1).
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Finite Automata

Finite Automata
A finite automaton is a quintuple (Q,Σ,δ ,s,F):

Q: the finite set of states
Σ: the finite input alphabet
δ : the transition function from Q×Σ to Q // deterministic FA

s ∈ Q: the start state

F ⊂ Q: the set of final (accepting) states
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The Final-State Function

A finite automaton M induces a final-state function φ : Σ⋆ → Q
such that φ(w) is the state M ends up in after reading the string
w. Thus, M accepts a string w if and only if φ(w) ∈ F.

We define the function φ recursively, using transition function δ :

φ(ε) = q0

φ(wa) = δ (φ(w),a) for w ∈ Σ
⋆,a ∈ Σ
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How it works

A finite automaton accepts strings in
a specific language. It begins in state q0
and reads characters one at a time from
the input string. It makes transitions
based on these characters. When it
reaches the end of the tape, if it is in one
of the accept states, that string is accepted
by the FA.
e.g., transition function: δ (0,a) = 1

final-state function: φ(ababa) = 1

This FA accepts those strings
that end in an odd number of a’s.
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The Suffix Function

In order to properly search for
the string, the program must define
a suffix function (σ) which
checks to see how much of what it
is reading matches the search
string at any given moment.

Later we will see the
equivalence between φ and σ .

σ(x) = max{k : Pk = x}
P = abaabc

P1 = a

P2 = ab

P3 = aba

P4 = abaa

σ(abbaba) = 3 //aba

Pk denotes the prefix of length k
of string P.
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String-Matching Automata

For any pattern P of length m, we can define its string matching
automata:

Q = {0, ...,m} (state)

q0 = 0 (start state)

F = {m} (accepting state)

δ (q,a) = σ(Pqa)
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Example

δ (q,a) = σ(Pqa)
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String-Matching Automata

The transition function chooses the next state to maintain the
invariant:

φ(Ti) = σ(Ti)

After scanning in i characters, the state number is the longest
prefix of P that is also a suffix of Ti.
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Finite-Automaton-Matcher

The simple loop structure
implies a running time for a
string of length n is O(n).

However: this is only the
running time for the actual
string matching. It does not
include the time it takes to
compute the transition
function.

FINITE-AUTOMATON-MATCHER(T,δ ,m)
1: n = T.length
2: q = 0
3: for i = 1 to n do
4: q = δ (q,T[i])
5: if q==m then
6: s = i−m
7: print “Pattern occurs at shift” s
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Computing the Transition Function

COMPUTE-TRANSITION-FUNCTION(P,Σ)
1: m = P.length
2: for q = 0 to m do
3: for each character a ∈ Σ do
4: k = min(m+1,q+2)
5: repeat
6: k = k−1
7: until Pk = Pqa
8: δ (q,a) = k
9: return δ

This procedure computes δ (q,a)
according to its definition. The
loop on line 2 cycles through all
the states, while the nested loop
on line 3 cycles through the
alphabet. Thus all state-character
combinations are accounted for.
Lines 4-7 set δ (q,a) to be the
largest k such that Pk = Pqa.
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Running Time of Compute-Transition-Function

Running Time: O(m3|Σ|)
Outer loop: m|Σ|
Inner loop: runs at most m+1

Pk = Pqa: requires up to m comparisons
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Improving Running Time

Much faster procedures for computing the transition function
exist. The time required to compute δ based on P can be
improved to O(m|Σ|)
The time it takes to find the string is linear: O(n).

This brings the total runtime to:O(n+m|Σ|).
Not bad if your string is fairly small relative to the text you are
searching in.
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The KMP Algorithm

Basic Idea of KMP
The prefix function π encapsulates knowledge about how the pattern
matches against shifts of itself. We take advantage of this information
to avoid testing useless shifts.
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The KMP Algorithm

The pointer only shift to the right and will not retreat to the left.

When test the T[s+1, ...s+q+1], P[1..q] = T[s+1, ...s+q], but
P[q+1] ̸= T[s+q+1].

Given that pattern characters P[1..q] match text characters
T[s+1..s+q], what is the least shift s′ > s such that for some
k < q,P[1..k] = T[s′+1..s′+ k], where s′+ k = s+q?

Given a pattern P[1..m], the prefix function for the pattern P is
the function π : {1,2, ...,m}→ {0,1, ...m−1} such that
π[q] = max{k : k < q and Pk = Pq}.
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An Example of KMP Algorithm
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The KMP Algorithm

COMPUTE-PREFIX-FUNCTION(P)
1: m = P.length
2: let π[1..m] be a new array
3: π[1] = 0
4: k = 0
5: for q = 2 to m do
6: while k > 0 and P[k+1] ̸= P[q] do
7: k = π[k]
8: if P[k+1] == P[q] then
9: k = k+1

10: π[q] = k
11: return π

The running
time is Θ(m)
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The KMP Algorithm
KMP-MATCHER(T,P)
1: n = T.length
2: m = P.length
3: π = Compute-Prefix-Function(P)
4: q = 0 //number of characters matched
5: for i = 1 to n do //scan the text from left to right
6: while q > 0 and P[q+1] ̸= T[i] do
7: q = π[q]
8: if P[q+1] == T[i] then
9: q = q+1 //next character matches

10: if q == m then //is all of P matches
11: print “Pattern occurs with shift” i−m
12: q = π[q] //look for the next match

The running
time is Θ(n)
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Summary of KMP

Build π from pattern

Run π on text

O(m+n) worst case string search
Good efficiency for patterns and texts with much repetition

binary files
graphics formats

Less useful for text strings.
Online algorithm

virus scanning
Internet spying
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