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3-SAT

▶ literals
▶ x = variable.
▶ ¬x = negation of a variable.

▶ clause = disjunction of literals.

▶ Boolean Formula
a collection of clauses, where each clause
have exactly 3 literals connected with ∨
and each clause is connected with ∧.
(x1 ∨ ¬x1 ∨ ¬x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (¬x1 ∨
¬x3 ∨ ¬x4)

x ∨ y ∨ z .

x ∨ y ∨¬z .
x ∨ ¬y .
¬x .
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3-SAT

For a particular collection of clauses.
(x1 ∨ ¬x1 ∨ ¬x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)
Given an instance(one input to a particular problem) of 3-SAT, for
example:

▶ x1 = 1, x2 = 1, x4 = 0

▶ x1 = 0, x2 = 0, x4 = 1

We can verify in polynomial time that whether an instance is
correct to the clauses.
Whereas, could we get a solution in polynomial time?
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Maximum Independent Set

▶ Independent Set subset S of
vertices such that no two vertices
in S are connected
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Independent Set Decision/Optimizaiton version

▶ IS OPTIMIZATION VERSION
▶ instance: graph G
▶ solution: independent set S in G
▶ measure: maximize the size of S

▶ IS DECISION VERSION
▶ instance: graph G , number K
▶ question: does G have independent set of size ≥ K

▶ For an optimizaiton problem, the related decision problem is
in a sense ”easier”, or at least ”no harder”.
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Maximum Independent Set

For a particular graph G and a number k.

the YES answer can be certified as an instance - an independent
set, we can verify in polynomial time that whether the instance
satisfies G and k .

Whereas, could we get a solution in polynomial time?
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P & NP

▶ P = decision problems that can be solved in polynomial time.

▶ NP(Non-deterministic Polynomial) = decision problems
for which the YES answer can be certified and this certificate
can be verified in polynomial time.

▶ if we can solve a problem in polynomial time, then we can
verify the problem in polynomial time.

▶ P ⊆ NP

▶ 3-SAT problem and Independent Set problem are NP
problems.
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3-SAT vs. Maximum Independent Set

Which one is “easier” to solve?

▶ Independent Set. ▶ 3-SAT.
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Reduction

* Given a decision problem A.

* Given a different decision problem B.

* an instance: the input to a particular problem.

a polynomial-time reduction algorithm
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Reduction

If we can solve problem B effectively, and A can reduce to B in
polynomial time, then we can solve problem A effectively.

In some sense, if A can reduce to B in polynomial time, then we
can say problem A is “easier”, or at least “no harder” than B.
Denoted by A ≤p B
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3-SAT ≤p Maximum Independent Set

If we have a black-box for Independent Set then we can solve
3-SAT problem using the black-box in polynomial time.
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3-SAT ≤p Maximum Independent Set

3-SAT with k clauses reduces to Independent Set with number k
in graph G .
Every literal in the clauses corresponds to a vertice on the graph. If
two literals are in the same clause or one literal are negation of the
other, then the related two vertices have an edge.

For example:

▶ x ∨ ¬y ∨ z

▶ w ∨ y ∨ ¬z
▶ two clauses(k = 2)
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3-SAT ≤p Maximum Independent Set

▶ Independent Set ⇒ 3-SAT:
If the graph has an independent set of k vertices, then each
vertex must come from a different clause. To obtain a
satisfying assignment, we assign the value TRUE to each
literal in the independent set. Since contradictory literals are
connected by edges, this assignment is consistent. There may
be variables that have no literal in the independent set; we
can set these to any value we like. The resulting assignment
satisfies the original 3-SAT formula.

▶ 3-SAT ⇒ Independent Set:
If we have a satisfying assignment, then we can choose one
literal in each clause that is TRUE. Those literals form an
independent set in the graph.
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3-SAT & Maximum Independent Set

▶ 3-SAT ≤p Independent Set. If Independent Set is in P then
3-SAT is in P.

▶ We can also prove Independent Set ≤p 3-SAT . If 3-SAT is in
P then Independent Set is in P.
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more reduction
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NPC & NP-hard

▶ P: decision problems that can be solved in polynomial time.

▶ NP: decision problems for which the YES answer can be
certified and this certificate can be verified in polynomial time.

▶ B is NP-hard:
if every problem A ∈ NP

A ≤p B

▶ B is NP-complete (NPC):
if B is NP-Hard, and

B ∈ NP
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P=NP? One of 7 Millennium Prize Problems
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NPC / NP-hard: How to prove

▶ P decision problems that can be solved in polynomial time.

▶ NP decision problems for which the YES answer can be
certified and this certificate can be verified in polynomial time.

▶ B is NP-hard:
if every problem A ∈ NP,

A ≤p B

▶ B is NP-complete (NPC):
if B is NP-Hard, and

B ∈ NP
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NPC / NP-hard: How to prove

▶ P decision problems that can be solved in polynomial time.

▶ NP decision problems for which the YES answer can be
certified and this certificate can be verified in polynomial time.

▶ B is NP-hard:
if we have already had a probem A ∈NP-hard, then we
only need to prove

A ≤p B

▶ B is NP-complete (NPC):
if B is NP-Hard, and

B ∈ NP
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COOK’s theroem

NP Decision problems for which the YES answer can be certified
and this certificate can be verified in polynomial time.

COOK’s theroem:

Every problem A ∈ NP ,

A ≤p SAT

Recall:
SAT is the Boolean satisfiability problem, and SAT ≤p 3-SAT.
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NPC / NP-hard: How to prove

NP Decision problems for which the YES answer can be certified
and this certificate can be verified in polynomial time.

COOK’s theroem:

Every problem A ∈ NP ,

A ≤p SAT

So, we have:
IS is NPC, since 3-SAT ≤p IS, and IS ∈ NP.
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