Introduction to Algorithms

Topic 9-2 : Approximation Basics

Xiang-Yang Li and Haisheng Tan

School of Computer Science and Technology
University of Science and Technology of China (USTC)

Fall Semester 2024

1/28

Approximation History

NP Optimization
Definition of Approximation

Outline

@ Approximation Basics
@ History
@ NP Optimization
@ Definition of Approximation

2/28

Approximation Basics History

NP Optimization
Definition of Approximation

History of Approximation

1966 Graham: First analyzed algorithms by approximation
ratio

1971 Cook: Gave the concepts of NP-Completeness

1972 Karp: Introduced plenty NP-Hard combinatorial opti-

mization problems
1970’s Approximation became a popular research area

1979 Garey & Johnson: Computers and Intractability: A
guide to the Theory of NP-Completeness

3/28

Approximation Basics History

NP Optimization
Definition of Approximation

NP Optimization Problem

An NP Optimization Problem P is a four tuple (7, sol,m,goal)
S.t.

@ [is the set of the instances of P and is recognizable in
polynomial time

@ Given an instance x of /, sol(x) is the set of short feasible
solutions of x and Vx and Vy such that |y| < p(]x|), it is decidable
in polynomial time whether y € sol(x).

@ Given an instance x and a feasible solution y of x, m(x,y) is a
polynomial time computable measure function providing a
positive integer which is the value of y.

@ goal € {max,min} denotes maximization or minimization.

4/28

Approximation Basics History

NP Optimization
Definition of Approximation

An Example of NP Optimization Problem

Example: Minimum Vertex Cover

Given a graph G = (V,E), the Minimum Vertex Cover problem
(MVCQ) is to find a vertex cover of minimum size, that is, a minimum
node subset U C V such that, for each edge (v;,v;) € E, either v; € U
orvieU.

5/28

Approximation Basics History

NP Optimization
Definition of Approximation

An Example of NP Optimization Problem

Example: Minimum Vertex Cover

Given a graph G = (V,E), the Minimum Vertex Cover problem
(MVCQ) is to find a vertex cover of minimum size, that is, a minimum
node. subset U C V such that, for each edge (v;,v;) € E, either v; € U
orvieU.

Justification — MVC is an NP Optimization Problem
e I ={G = (V,E)|Gisagraph}; poly-time decidable
e 50l(G)={U C V|V(v;,vj) eE[vie UVv; e Ul};
short feasible solution set and poly-time decidable
e m(G,U) = |U|; poly-time computable function

@ goal = min.

6/28

Approximation Basics History

NP Optimization
Definition of Approximation

NPO Class

Definition: (NPO Class)
The class NPO is the set of all NP optimization problems.

Definition: (Goal of NPO Problem)
The goal of an NPO problem with respect to an instance x is to find an
optimum solution, that is, a feasible solution y such that

m(x,y) = goal{m(x,y’) : y' € sol(x)}.

7/28

Approximation Basics History

NP Optimization
Definition of Approximation

What is Approximation Algorithm

Definition: Approximation Algorithm

Given an NP optimization problem P = (I,sol,m, goal), an
algorithm A is an approximation algorithm for P if, for any given
instance x € /, it returns an approximate solution, that is a feasible
solution A(x) € sol(x) with guaranteed quality.

8/28

Approximation Basics History

NP Optimization
Definition of Approximation

What is Approximation Algorithm

Definition: Approximation Algorithm

Given an NP optimization problem P = (I,sol,m, goal), an
algorithm A is an approximation algorithm for P if, for any given
instance x € /, it returns an approximate solution, that is a feasible
solution A(x) € sol(x) with guaranteed quality.

Note:

o Guaranteed quality is the difference between approximation and
heuristics.

@ Approximation for PO, NPO and NP-hard Optimization.

@ Decision, Optimization, and Constructive Problems.

9/28

Approximation Basics History

NP Optimization
Definition of Approximation

r— Approximation

Definition: Approximation Ratio

Let P be an NPO problem. Given an instance x and a feasible
solution y of x, we define the performance ratio of y with respect to x,
we define the performance ratio of y with respect to x as

m(x,y) opt(x) }

RO =X o))

Definition: r—Approximation

Given an optimization problem P and an approximation algorithm
A for P, A is said to be an r — approximation for P if, given any input
instance x of P, the performance ratio of the approximate solution
A(x) is bounded by r, say, R(x,A(x)) <r.

10/28

Approximation Basics History

NP Optimization
Definition of Approximation

APX Class

Definition: F-APX

Given a class of functions F, an NPO problem P belongs to the
class F-APX if an r—approximation polynomial time algorithm A for
P exists, for some function r € F.

Example:
@ F is constant functions — P € APX.
@ Fis O(logn) functions — P € log —APX.
e Fis O(n*) functions (polynomials) — p € poly — APX.
e Fis O(2") functions — P € exp — APX.

11/28

Approximation Basics History

NP Optimization
Definition of Approximation

Special Case

Definition: Polynomial Time Approximation Scheme — PTAS

An NPO problem P belongs to the class PTAS if an algorithm A
exists such that, for any rational value € > 0, when applied A to input
(x,€), it returns an (1 + €)—approximate solution of x in time
polynomial in |x|.

Definition: Fully PTAS — FPTAS

An NPO problem P belongs to the class FPTAS if an algorithm A
exists such that, for any rational value € > 0, when applied A to input
(x,€), it returns an (1 + €)—approximate solution of x in time
polynomial both in [x| and in .

12/28

Approximation Basics

History
NP Optimization
Definition of Approximation

Approximation Class Inclusion

If P # NP, then FPTAS C PTAS CAPX C Log—APX C
Poly —APX C Exp —APX C NPO

4 NPO

s EXP-APX) o Constant-Factor

POLY-APX Approximation (APX)
LOG-APX o Reduce App. Ratio
N\

o Reduce Time Complexity
e PTAS ((1+¢)—Appx)

o Test Existence

o Reduce Time Complexity

The vertex-cover problem

Outline

© The vertex-cover problem

14/28

The vertex-cover problem

Vertex Cover Problem

Problem

Vertex Cover: A vertex cover of a graph G is a set of vertices, V.,
such that every edge in G has at least one of vertex in V. as an
endpoint.

Instance: Given an undirected graph G = (V,E).

Objective: To find a minimum-size vertex cover in a given graph G.
Solution: A subset V' C V that if (u,v) € E, thenu € V' orv e V' (or
both)

Measure: The size which is the number of vertices in it.

15/28

The vertex-cover problem

Approximate Vertex-Cover

The following approximation algorithm takes as input an undirected
graph G and returns a vertex cover whose size is guaranteed to be no
more than twice the size of an optimal vertex cover.

APPROX-VERTEX-COVER(G)

1. C=g9

2: EE=G.E

3: while £’ # & do

4: Let(u,v) be an arbitrary edge of E’

5 C=CU{u,v}

6 remove from E’ every edge incident on either u or v
7: return C

16/28

The vertex-cover problem

Approximate Vertex-Cover

The following approximation algorithm takes as input an undirected
graph G and returns a vertex cover whose size is guaranteed to be no
more than twice the size of an optimal vertex cover.

APPROX-VERTEX-COVER(G)
: C=0
- E'=G.E
while £’ # & do
Let(u,v) be an arbitrary edge of E’
C=CU{u,v}
remove from E’ every edge incident on either u or v

9 e R WS

7: return C
Approximation Ratio?

17/28

The set cover problem

Outline

e The set cover problem

18/28

The set cover problem

Set Cover Problem

Problem

Instance: Given a finite set X and a family .%# of subsets of X, such
that every element of X belongs to at least one subset in

52 X = USE? S.

Problem: Find a minimum-size subset . C .% whose members
cover all of X: X = {Jgc & S.

19/28

The set cover problem

An Example

\(10 S 11)) 12

U={1,2,..,12}

S ={S1,55,...,56}
S1 ={1,2,3,4,5,6}
S, ={5,6,8,9}

S ={1,4,7,10}
Sy =1{2,5,7,8,11}
Ss ={3,6,9,12}
Se = {10,11}

20/28

The set cover problem

An Example

1 2 3 U=1{1,2,..,12}
S= {S13S27°"7S6}
S1=1{1,2,3,4,5,6}

4 5 6 S2:{5767859}
} S3:{17477a10}
S =1{2,5,7,8,11}
7 s, (8 9 Ss ={3,6,9,12}
(Se = {10,11}
S3 \ Ss

12 OptimalSolution :

\(10 S6 11)) \) S’ = {S3,54,85}

21/28

The set cover problem

Greedy Algorithm

GREEDY-SET-COVER(X,.%)

. U=X

2. L+ 0

3: while U # 0 do

4: select an S € .# that maximizes [SNU]|.
5 U=U-S.

6 £ =L U{S}

7: return .Z.

22/28

The set cover problem

Analysis

Theorem 1

Greedy-Set-Cover is a polynomial-time p (n)—approximation
algorithm, where p(n) = H(max{|S| : S € .#}). (We denote the dth
harmonic number H; = Y%, 1/i by H(d).)

23/28

The set cover problem

Analysis

Theorem 1

Greedy-Set-Cover is a polynomial-time p (n)—approximation
algorithm, where p(n) = H(max{|S| : S € .#}). (We denote the dth
harmonic number H; = Y%, 1/i by H(d).)

Corollary 2

Greedy-Set-Cover is a polynomial-time (In |X| + 1)-approximation
algorithm.

23/28

£
2
=
=
S
=
o
2
S
-
@
2
2

Greedy Performs Badly

r- -

T

-1

! P

1! 1 1

H--r -1

' 1 1 1
1oy ! 1 1
! 1 ! 1 ! 1
! 1 1] 1 1!
el ot _.__
! 1 1 1 1 1!
Y I [N IR N N
1 | 1 \ I |
! 1 ! 1 ! 1
! 1 ! 1 ! 1
! 1 ! 1 ! 1
! 1 ! 1 ! 1
1o ! 1 ! 1
1y ! 1 ! 1
1 1 ! 1 ! 1
k=A==t n
1 ! ! 1
1 1 1 1
__._ 1 @, _.__
1 | I 1
1 1 1 o1
e _._ 1 11
1 | ! 1
1 1 1 o!
ey 1 @ 1 1
1 | ! 1
1 1 1 o!
e 1 @ 1
1 ! ! 1
1 1 1 P
1! °, 1 & 1 1
1 1 1 |
1 1 1 1
| [] ' g h 1 @ "
1 1 1 |
1 1 1 1
e 1 @ 1@ 1
1 1 1

1 1 1 1
1oy 1@, 1 @
1! 1 ! 1 ! 1"
[M [P Y N
! 1 ! 1 ! 1
L] — L —

Ss

Sk

24/28

Knapsack

Outline

© Knapsack

25/28

Knapsack

Knapsack

Problem

Instance: Given a set of n items, each with profit p; and size s;, and a
knapsack with size bound B(B > s;).
Solution: A subset of items S C [r] that subject to the constraint

Yiessi < B.
Measure: Total profit of the chosen subset, } ;c¢p;.

26/28

Knapsack

Greedy Algorithm

Greedy Algorithm?

1. Sort items in non-increasing order of %
1

2. Greedily pick items in above order.

27/28

Knapsack

Greedy Algorithm

Greedy Algorithm?

1. Sort items in non-increasing order of %
1

2. Greedily pick items in above order.

Consider the following input:
@ An item with size 1 and profit 2

@ An item with size B and profit B

27/28

Knapsack

Greedy Algorithm

Greedy Algorithm?

1. Sort items in non-increasing order of %
1

2. Greedily pick items in above order.

‘Our greedy algorithm will
only pick the small item,
making this a pretty bad
approximation algorithm

Consider the following input:
@ An item with size 1 and profit 2

@ An item with size B and profit B

27/28

Knapsack

Greedy Algorithm

Greedy Algorithm Redux

1. Sort items in non-increasing order of %
1

2. Greedily add items until we hit an item q; that is too big.
(Xk=15i > B)
3. Pick the better of {a,az,...,a;_1 } and a;.

28/28

Knapsack

Greedy Algorithm

Greedy Algorithm Redux

1. Sort items in non-increasing order of %
1

2. Greedily add items until we hit an item q; that is too big.
(Xk=15i > B)
3. Pick the better of {a,az,...,a;_1 } and a;.

Greedy Algorithm Redux is a 2—approximation for the knapsack
problem.

Actually, we can achieve (1 + €)-approximation for any € > 0 based
on Dynamic Programming.

28/28

	Approximation Basics
	History
	NP Optimization
	Definition of Approximation

	The vertex-cover problem
	The set cover problem
	Knapsack

