Introduction to Algorithms Topic 9-2 : Approximation Basics

Xiang-Yang Li and Haisheng Tan

School of Computer Science and Technology University of Science and Technology of China (USTC)

Fall Semester 2024

Approximation Basics

The vertex-cover problem The set cover problem Knapsack

NP Optimization **Definition of Approximation**

Outline

- Approximation Basics
 - History
 - NP Optimization
 - Definition of Approximation

E OQC

History NP Optimization Definition of Approximation

History of Approximation

- 1966 **Graham:** First analyzed algorithms by approximation ratio
- 1971 **Cook:** Gave the concepts of NP-Completeness
- 1972 **Karp:** Introduced plenty NP-Hard combinatorial optimization problems
- 1970's Approximation became a popular research area
- 1979 **Garey & Johnson:** Computers and Intractability: A guide to the Theory of NP-Completeness

History NP Optimization Definition of Approximation

NP Optimization Problem

An NP Optimization Problem P is a four tuple (*I*, *sol*, *m*, *goal*) s.t.

- *I* is the set of the instances of P and is recognizable in polynomial time
- Given an instance x of I, sol(x) is the set of short feasible solutions of x and $\forall x$ and $\forall y$ such that $|y| \le p(|x|)$, it is decidable in polynomial time whether $y \in sol(x)$.
- Given an instance x and a feasible solution y of x, m(x, y) is a polynomial time computable measure function providing a positive integer which is the value of y.
- $goal \in \{max, min\}$ denotes maximization or minimization.

History NP Optimization Definition of Approximation

An Example of NP Optimization Problem

Example: Minimum Vertex Cover

Given a graph G = (V, E), the Minimum Vertex Cover problem (MVC) is to find a vertex cover of minimum size, that is, a minimum node subset $U \subseteq V$ such that, for each edge $(v_i, v_j) \in E$, either $v_i \in U$ or $v_j \in U$.

History NP Optimization Definition of Approximation

An Example of NP Optimization Problem

Example: Minimum Vertex Cover

Given a graph G = (V, E), the Minimum Vertex Cover problem (MVC) is to find a vertex cover of minimum size, that is, a minimum node. subset $U \subseteq V$ such that, for each edge $(v_i, v_j) \in E$, either $v_i \in U$ or $v_j \in U$.

Justification \rightarrow MVC is an NP Optimization Problem

- $I = \{G = (V, E) | Gisagraph\};$ poly-time decidable
- sol(G) = {U ⊆ V | ∀(v_i, v_j) ∈ E[v_i ∈ U ∨ v_j ∈ U]};
 short feasible solution set and poly-time decidable
- m(G, U) = |U|; poly-time computable function
- goal = min.

History NP Optimization Definition of Approximation

NPO Class

Definition: (NPO Class)

The class NPO is the set of all NP optimization problems.

Definition: (Goal of NPO Problem)

The goal of an NPO problem with respect to an instance *x* is to find an optimum solution, that is, a feasible solution *y* such that $m(x,y) = goal\{m(x,y') : y' \in sol(x)\}.$

History NP Optimization Definition of Approximation

What is Approximation Algorithm

Definition: Approximation Algorithm

Given an NP optimization problem P = (I, sol, m, goal), an algorithm *A* is an approximation algorithm for *P* if, for any given instance $x \in I$, it returns an approximate solution, that is a feasible solution $A(x) \in sol(x)$ with guaranteed quality.

History NP Optimization Definition of Approximation

What is Approximation Algorithm

Definition: Approximation Algorithm

Given an NP optimization problem P = (I, sol, m, goal), an algorithm A is an approximation algorithm for P if, for any given instance $x \in I$, it returns an approximate solution, that is a feasible solution $A(x) \in sol(x)$ with guaranteed quality.

Note:

- Guaranteed quality is the difference between approximation and heuristics.
- Approximation for PO, NPO and NP-hard Optimization.
- Decision, Optimization, and Constructive Problems.

History NP Optimization Definition of Approximation

r-Approximation

Definition: Approximation Ratio

Let P be an NPO problem. Given an instance x and a feasible solution y of x, we define the performance ratio of y with respect to x, we define the performance ratio of y with respect to x as

$$R(x,y) = \max\{\frac{m(x,y)}{opt(x)}, \frac{opt(x)}{m(x,y)}\}$$

Definition: *r*-Approximation

Given an optimization problem *P* and an approximation algorithm *A* for *P*, *A* is said to be an *r* – *approximation* for *P* if, given any input instance *x* of *P*, the performance ratio of the approximate solution A(x) is bounded by *r*, say, $R(x,A(x)) \le r$.

(日本4月本4日本4日本日本日本4日本4日本)

History NP Optimization Definition of Approximation

APX Class

Definition: F-APX

Given a class of functions F, an NPO problem P belongs to the class F-APX if an r-approximation polynomial time algorithm A for P exists, for some function $r \in F$.

Example:

- *F* is constant functions $\rightarrow P \in APX$.
- *F* is $O(\log n)$ functions $\rightarrow P \in \log -APX$.
- *F* is $O(n^k)$ functions (polynomials) $\rightarrow p \in poly APX$.
- *F* is $O(2^{n^k})$ functions $\rightarrow P \in exp APX$.

History NP Optimization Definition of Approximation

Special Case

Definition: Polynomial Time Approximation Scheme \rightarrow PTAS An NPO problem *P* belongs to the class PTAS if an algorithm *A* exists such that, for any rational value $\varepsilon > 0$, when applied *A* to input (x, ε) , it returns an $(1 + \varepsilon)$ -approximate solution of *x* in time polynomial in |x|.

Definition: Fully PTAS → FPTAS

An NPO problem *P* belongs to the class **FPTAS** if an algorithm *A* exists such that, for any rational value $\varepsilon > 0$, when applied *A* to input (x, ε) , it returns an $(1 + \varepsilon)$ -approximate solution of *x* in time polynomial both in |x| and in $\frac{1}{\varepsilon}$.

(日本4月本4日本4日本日本日本4日本4日本)

History NP Optimization Definition of Approximation

Approximation Class Inclusion

If $P \neq NP$, then $FPTAS \subseteq PTAS \subseteq APX \subseteq Log - APX \subseteq$ $Poly - APX \subseteq Exp - APX \subseteq NPO$

- Constant-Factor Approximation (APX)
 - Reduce App. Ratio
 - Reduce Time Complexity
- PTAS $((1 + \varepsilon) Appx)$
 - Test Existence
 - Reduce Time Complexity

Outline

- History
- NP Optimization
- Definition of Approximation
- 2 The vertex-cover problem
- 3 The set cover problem

A Knapsack

・ロ・・回・・ヨ・・ヨ・ しゅつ

Vertex Cover Problem

Problem

Vertex Cover: A vertex cover of a graph *G* is a set of vertices, V_c , such that every edge in *G* has at least one of vertex in V_c as an endpoint.

Instance: Given an undirected graph G = (V, E).

Objective: To find a minimum-size vertex cover in a given graph *G*. **Solution:** A subset $V' \subseteq V$ that if $(u, v) \in E$, then $u \in V'$ or $v \in V'$ (or both)

Measure: The size which is the number of vertices in it.

4日×4月×4日×4日×日

Approximate Vertex-Cover

The following approximation algorithm takes as input an undirected graph G and returns a vertex cover whose size is guaranteed to be no more than twice the size of an optimal vertex cover.

APPROX-VERTEX-COVER(G)

- 1: $C = \emptyset$
- 2: E' = G.E
- 3: while $E' \neq \emptyset$ do
- 4: Let(u, v) be an arbitrary edge of E'
- 5: $C = C \cup \{u, v\}$
- 6: remove from E' every edge incident on either u or v
- 7: return C

・ロト・日本・ヨト・ヨー・クへの

Approximate Vertex-Cover

The following approximation algorithm takes as input an undirected graph G and returns a vertex cover whose size is guaranteed to be no more than twice the size of an optimal vertex cover.

APPROX-VERTEX-COVER(G)

- 1: $C = \emptyset$
- 2: E' = G.E
- 3: while $E' \neq \emptyset$ do
- 4: Let(u, v) be an arbitrary edge of E'
- 5: $C = C \cup \{u, v\}$
- 6: remove from E' every edge incident on either u or v
- 7: return C

Approximation Ratio?

4日×4月×4日×4日×日

Outline

- History
- NP Optimization
- Definition of Approximation

2 The vertex-cover problem

Knapsack

<mark>이미지(문지문지문지문지 문) 원임()</mark> 18/28

Set Cover Problem

Problem

Instance: Given a finite set *X* and a family \mathscr{F} of subsets of *X*, such that every element of *X* belongs to at least one subset in $\mathscr{F} : X = \bigcup_{S \in \mathscr{F}} S$. **Problem:** Find a minimum-size subset $\mathscr{L} \subseteq \mathscr{F}$ whose members cover all of *X*: $X = \bigcup_{S \in \mathscr{L}} S$.

4日×4日×4日×4日×日×日×日×1000

An Example

$$U = \{1, 2, ..., 12\}$$

$$S = \{S_1, S_2, ..., S_6\}$$

$$S_1 = \{1, 2, 3, 4, 5, 6\}$$

$$S_2 = \{5, 6, 8, 9\}$$

$$S_3 = \{1, 4, 7, 10\}$$

$$S_4 = \{2, 5, 7, 8, 11\}$$

$$S_5 = \{3, 6, 9, 12\}$$

$$S_6 = \{10, 11\}$$

20/28

・ロ・・西・・日・・日・ 日 うへぐ

An Example

$$U = \{1, 2, ..., 12\}$$

$$S = \{S_1, S_2, ..., S_6\}$$

$$S_1 = \{1, 2, 3, 4, 5, 6\}$$

$$S_2 = \{5, 6, 8, 9\}$$

$$S_3 = \{1, 4, 7, 10\}$$

$$S_4 = \{2, 5, 7, 8, 11\}$$

$$S_5 = \{3, 6, 9, 12\}$$

$$S_6 = \{10, 11\}$$

OptimalSolution : $S' = \{S_3, S_4, S_5\}$

イロト・クライモディモデ

E 990

21/28

Greedy Algorithm

GREEDY-SET-COVER (X, \mathscr{F})

- 1: U = X
- 2: $\mathscr{L} \leftarrow \emptyset$
- 3: while $U \neq \emptyset$ do
- 4: select an $S \in \mathscr{F}$ that maximizes $|S \cap U|$.
- 5: U = U S.
- $6:\qquad \mathscr{L}=\mathscr{L}\cup\{S\}$
- 7: return \mathscr{L} .

Analysis

Theorem 1

Greedy-Set-Cover is a polynomial-time $\rho(n)$ -approximation algorithm, where $\rho(n) = H(\max\{|S| : S \in \mathscr{F}\})$. (We denote the *d*th harmonic number $H_d = \sum_{i=1}^d 1/i$ by H(d).)

イロト イラト イヨト イヨト

E 996

Analysis

Theorem 1

Greedy-Set-Cover is a polynomial-time $\rho(n)$ -approximation algorithm, where $\rho(n) = H(\max\{|S| : S \in \mathscr{F}\})$. (We denote the *d*th harmonic number $H_d = \sum_{i=1}^d 1/i$ by H(d).)

Corollary 2

Greedy-Set-Cover is a polynomial-time $(\ln |X| + 1)$ -approximation algorithm.

E 996

Greedy Performs Badly

24/28

*ロ * * 虚 * * 言 * * 言 * うへの

Outline

- Approximation Basics
 - History
 - NP Optimization
 - Definition of Approximation
- 2 The vertex-cover problem
- 3 The set cover problem

・ロ・・回・・ヨ・・ヨ・ しゅつ

Problem

Instance: Given a set of *n* items, each with profit p_i and size s_i , and a knapsack with size bound $B(B > s_i)$. **Solution:** A subset of items $S \subset [n]$ that subject to the constraint $\sum_{i \in S} s_i \leq B$. **Measure:** Total profit of the chosen subset, $\sum_{i \in S} p_i$.

イロト イラト イヨト イヨト

E 920

Greedy Algorithm

Greedy Algorithm?

- 1. Sort items in non-increasing order of $\frac{P_i}{S_i}$
- 2. Greedily pick items in above order.

4 D F (() F () F

E OQC

Greedy Algorithm

Greedy Algorithm?

- 1. Sort items in non-increasing order of $\frac{P_i}{S_i}$
- 2. Greedily pick items in above order.

Consider the following input:

- An item with size 1 and profit 2
- An item with size *B* and profit *B*

イロッ イワッ イヨッ イヨッ

Greedy Algorithm

Greedy Algorithm?

- 1. Sort items in non-increasing order of $\frac{P_i}{S_i}$
- 2. Greedily pick items in above order.

Consider the following input:

- An item with size 1 and profit 2
- An item with size *B* and profit *B*

Our greedy algorithm will only pick the small item, making this a pretty bad approximation algorithm

(D) (**(**) + () + (**(**) + (

Greedy Algorithm

Greedy Algorithm Redux

- 1. Sort items in non-increasing order of $\frac{P_i}{S_i}$
- 2. Greedily add items until we hit an item a_i that is too big. $(\sum_{k=1}^{i} s_i > B)$
- 3. Pick the better of $\{a_1, a_2, \dots, a_{i-1}\}$ and a_i .

イロト イラト イヨト イヨト

E OQC

Greedy Algorithm

Greedy Algorithm Redux

- 1. Sort items in non-increasing order of $\frac{P_i}{S_i}$
- 2. Greedily add items until we hit an item a_i that is too big. $(\sum_{k=1}^{i} s_i > B)$
- 3. Pick the better of $\{a_1, a_2, \dots, a_{i-1}\}$ and a_i .

Greedy Algorithm Redux is a 2-approximation for the knapsack problem.

Actually, we can achieve $(1 + \varepsilon)$ -approximation for any $\varepsilon > 0$ based on Dynamic Programming.