Introduction to Algorithms Topic 9-2 : Approximation Basics

Xiang-Yang Li and Haisheng Tan

School of Computer Science and Technology University of Science and Technology of China (USTC)

Fall Semester 2024

[Approximation Basics](#page-1-0)

[The vertex-cover problem](#page-13-0) [The set cover problem](#page-17-0) [Knapsack](#page-25-0) **[History](#page-2-0)** [NP Optimization](#page-3-0) [Definition of Approximation](#page-7-0)

Outline

- 1 [Approximation Basics](#page-1-0)
	- [History](#page-2-0)
	- [NP Optimization](#page-3-0)
	- [Definition of Approximation](#page-7-0)

[The vertex-cover problem](#page-13-0)

Ξ

[History](#page-2-0) [NP Optimization](#page-3-0) [Definition of Approximation](#page-7-0)

History of Approximation

- 1966 Graham: First analyzed algorithms by approximation ratio
- 1971 Cook: Gave the concepts of NP-Completeness
- 1972 Karp: Introduced plenty NP-Hard combinatorial optimization problems
- 1970's Approximation became a popular research area
- 1979 Garey & Johnson: Computers and Intractability: A guide to the Theory of NP-Completeness

 $($ \Box $)$ $($ \Box $)$

 raa

[History](#page-2-0) [NP Optimization](#page-3-0) [Definition of Approximation](#page-7-0)

NP Optimization Problem

An NP Optimization Problem P is a four tuple (*I*,*sol*,*m*,*goal*) s.t.

- *I* is the set of the instances of P and is recognizable in polynomial time
- Given an instance *x* of *I*, $sol(x)$ is the set of short feasible solutions of *x* and $\forall x$ and $\forall y$ such that $|y| \leq p(|x|)$, it is decidable in polynomial time whether $y \in sol(x)$.
- Given an instance *x* and a feasible solution *y* of *x*, $m(x, y)$ is a polynomial time computable measure function providing a positive integer which is the value of *y*.
- *goal* ∈ {*max*,*min*} denotes maximization or minimization.

[History](#page-2-0) [NP Optimization](#page-3-0) [Definition of Approximation](#page-7-0)

An Example of NP Optimization Problem

Example: Minimum Vertex Cover

Given a graph $G = (V, E)$, the Minimum Vertex Cover problem (MVC) is to find a vertex cover of minimum size, that is, a minimum node subset $U \subseteq V$ such that, for each edge $(v_i, v_j) \in E,$ either $v_i \in U$ or $v_i \in U$.

 $($ \Box \triangleright $($ \Box \triangleright $($ \Box \triangleright $($ \Box \triangleright \blacksquare

[History](#page-2-0) [NP Optimization](#page-3-0) [Definition of Approximation](#page-7-0)

An Example of NP Optimization Problem

Example: Minimum Vertex Cover

Given a graph $G = (V, E)$, the Minimum Vertex Cover problem (MVC) is to find a vertex cover of minimum size, that is, a minimum node. subset $U \subseteq V$ such that, for each edge $(v_i,v_j) \in E,$ either $v_i \in U$ or $v_i \in U$.

Justification \rightarrow MVC is an NP Optimization Problem

- $I = \{G = (V, E) | G is a graph \}$; poly-time decidable
- $sol(G) = \{ U \subseteq V | \forall (v_i, v_j) \in E[v_i \in U \lor v_j \in U] \};$ short feasible solution set and poly-time decidable
- $m(G, U) = |U|$; poly-time computable function
- \bullet goal = min .

[History](#page-2-0) [NP Optimization](#page-3-0) [Definition of Approximation](#page-7-0)

NPO Class

Definition: (NPO Class)

The class NPO is the set of all NP optimization problems.

Definition: (Goal of NPO Problem)

The goal of an NPO problem with respect to an instance *x* is to find an optimum solution, that is, a feasible solution *y* such that $m(x, y) = goal{m(x, y') : y' \in sol(x)}$.

 $($ ロ } $($ \oplus } $($ \oplus } $($ \oplus }

 $E \Omega Q$

[History](#page-2-0) [NP Optimization](#page-3-0) [Definition of Approximation](#page-7-0)

What is Approximation Algorithm

Definition: Approximation Algorithm

Given an NP optimization problem $P = (I, sol, m, goal)$, an algorithm *A* is an approximation algorithm for *P* if, for any given instance $x \in I$, it returns an approximate solution, that is a feasible solution $A(x) \in sol(x)$ with guaranteed quality.

 $(1 + \epsilon)$. The set of \mathbb{R} is a set of \mathbb{R}

[History](#page-2-0) [NP Optimization](#page-3-0) [Definition of Approximation](#page-7-0)

What is Approximation Algorithm

Definition: Approximation Algorithm

Given an NP optimization problem $P = (I, sol, m, goal)$, an algorithm *A* is an approximation algorithm for *P* if, for any given instance $x \in I$, it returns an approximate solution, that is a feasible solution $A(x) \in sol(x)$ with guaranteed quality.

Note:

- Guaranteed quality is the difference between approximation and heuristics.
- Approximation for PO, NPO and NP-hard Optimization.
- Decision, Optimization, and Constructive Problems.

 $($ \Box $)$ $($ \Box $)$

 $E \Omega Q$

[History](#page-2-0) [NP Optimization](#page-3-0) [Definition of Approximation](#page-7-0)

r−Approximation

Definition: Approximation Ratio

Let P be an NPO problem. Given an instance *x* and a feasible solution *y* of *x*, we define the performance ratio of *y* with respect to *x*, we define the performance ratio of *y* with respect to *x* as

$$
R(x, y) = \max\{\frac{m(x, y)}{opt(x)}, \frac{opt(x)}{m(x, y)}\}
$$

Definition: *r*−Approximation

Given an optimization problem *P* and an approximation algorithm *A* for *P*, *A* is said to be an *r* −*approximation* for *P* if, given any input instance *x* of *P*, the performance ratio of the approximate solution *A*(*x*) is bounded by *r*, say, $R(x, A(x)) \le r$.

K ロ ト K 何 ト K 違 ト K 違 ト …

(国) - OQ

[History](#page-2-0) [NP Optimization](#page-3-0) [Definition of Approximation](#page-7-0)

APX Class

Definition: F-APX

Given a class of functions *F*, an NPO problem *P* belongs to the class F-APX if an *r*−approximation polynomial time algorithm *A* for *P* exists, for some function $r \in F$.

Example:

- *F* is constant functions \rightarrow *P* \in *APX*.
- *F* is *O*(log*n*) functions → *P* ∈ log−*APX*.
- *F* is $O(n^k)$ functions (polynomials) \rightarrow *p* ∈ *poly* − *APX*.
- *F* is $O(2^{n^k})$ functions $\rightarrow P \in exp APX$.

[History](#page-2-0) [NP Optimization](#page-3-0) [Definition of Approximation](#page-7-0)

Special Case

Definition: Polynomial Time Approximation Scheme \rightarrow PTAS An NPO problem *P* belongs to the class PTAS if an algorithm *A* exists such that, for any rational value $\varepsilon > 0$, when applied A to input (x, ε) , it returns an $(1+\varepsilon)$ -approximate solution of x in time polynomial in |*x*|.

Definition: Fully PTAS \rightarrow FPTAS

An NPO problem *P* belongs to the class FPTAS if an algorithm *A* exists such that, for any rational value $\varepsilon > 0$, when applied *A* to input (x, ε) , it returns an $(1+\varepsilon)$ -approximate solution of x in time polynomial both in $|x|$ and in $\frac{1}{\varepsilon}$.

[History](#page-2-0) [NP Optimization](#page-3-0) [Definition of Approximation](#page-7-0)

Approximation Class Inclusion

 $If P ≠ NP$, then $FPTAS ⊂ PTAS ⊂ APX ⊂ Log - APX ⊂$ *Poly*−*APX* ⊆ *Exp*−*APX* ⊆ *NPO*

- Constant-Factor Approximation (APX)
	- Reduce App. Ratio
	- Reduce Time Complexity
- PTAS ((1+ε)−*Appx*)
	- **o** Test Existence
	- Reduce Time Complexity

Outline

[Approximation Basics](#page-1-0)

- **•** [History](#page-2-0)
- [NP Optimization](#page-3-0)
- [Definition of Approximation](#page-7-0)

2 [The vertex-cover problem](#page-13-0)

Ξ

 OQ

K ロ ト K 母 ト K 君 ト K 君 ト .

Vertex Cover Problem

Problem

Vertex Cover: A vertex cover of a graph *G* is a set of vertices, *Vc*, such that every edge in *G* has at least one of vertex in V_c as an endpoint.

Instance: Given an undirected graph $G = (V, E)$.

Objective: To find a minimum-size vertex cover in a given graph *G*. **Solution:** A subset $V' \subseteq V$ that if $(u, v) \in E$, then $u \in V'$ or $v \in V'$ (or both)

Measure: The size which is the number of vertices in it.

 $($ ロ } $($ \oplus } $($ \oplus } $($ \oplus }

 $E = \Omega Q$

Approximate Vertex-Cover

The following approximation algorithm takes as input an undirected graph G and returns a vertex cover whose size is guaranteed to be no more than twice the size of an optimal vertex cover.

APPROX-VERTEX-COVER(*G*)

- 1: $C = \varnothing$
- 2: $E' = G.E$
- 3: while $E' \neq \emptyset$ do
- 4: Let(u , v) be an arbitrary edge of E'
- 5: $C = C \cup \{u, v\}$
- 6: remove from E' every edge incident on either u or v
- 7: return C

 $($ ロ } $($ \oplus } $($ \oplus } $($ \oplus }

画 Ω

Approximate Vertex-Cover

The following approximation algorithm takes as input an undirected graph G and returns a vertex cover whose size is guaranteed to be no more than twice the size of an optimal vertex cover.

APPROX-VERTEX-COVER(*G*)

- 1: $C = \emptyset$
- 2: $E' = G.E$
- 3: while $E' \neq \emptyset$ do
- 4: Let(u , v) be an arbitrary edge of E'
- 5: $C = C \cup \{u, v\}$
- 6: remove from E' every edge incident on either *u* or *v*
- 7: return C

Approximation Ratio?

 $($ \Box $)$ $($ \Box $)$

 $E \Omega Q$

Outline

- **•** [History](#page-2-0)
- [NP Optimization](#page-3-0)
- [Definition of Approximation](#page-7-0)

[The vertex-cover problem](#page-13-0)

K ロ ト K 母 ト K 君 ト K 君 ト .

Ξ

Set Cover Problem

Problem

Instance: Given a finite set *X* and a family $\mathscr F$ of subsets of *X*, such that every element of *X* belongs to at least one subset in $\mathscr{F}: X = \bigcup_{S \in \mathscr{F}} S.$ **Problem:** Find a minimum-size subset $\mathcal{L} \subset \mathcal{F}$ whose members cover all of *X*: $X = \bigcup_{S \in \mathscr{L}} S$.

An Example

$$
U = \{1, 2, ..., 12\}
$$

\n
$$
S = \{S_1, S_2, ..., S_6\}
$$

\n
$$
S_1 = \{1, 2, 3, 4, 5, 6\}
$$

\n
$$
S_2 = \{5, 6, 8, 9\}
$$

\n
$$
S_3 = \{1, 4, 7, 10\}
$$

\n
$$
S_4 = \{2, 5, 7, 8, 11\}
$$

\n
$$
S_5 = \{3, 6, 9, 12\}
$$

\n
$$
S_6 = \{10, 11\}
$$

20 / 28

目 QQQ

An Example

$$
U = \{1, 2, ..., 12\}
$$

\n
$$
S = \{S_1, S_2, ..., S_6\}
$$

\n
$$
S_1 = \{1, 2, 3, 4, 5, 6\}
$$

\n
$$
S_2 = \{5, 6, 8, 9\}
$$

\n
$$
S_3 = \{1, 4, 7, 10\}
$$

\n
$$
S_4 = \{2, 5, 7, 8, 11\}
$$

\n
$$
S_5 = \{3, 6, 9, 12\}
$$

\n
$$
S_6 = \{10, 11\}
$$

OptimalSolution : $S' = \{S_3, S_4, S_5\}$

 $\mathbf{A} \equiv \mathbf{B} + \mathbf{A} \equiv \mathbf{B} + \mathbf{A} \equiv \mathbf{B} + \mathbf{A} \equiv \mathbf{B} + \mathbf{A}$

 $2Q$

 \equiv

21 / 28

Greedy Algorithm

GREEDY-SET-COVER (X,\mathscr{F})

- 1: $U = X$
- $2: \mathscr{L} \leftarrow \emptyset$
- 3: while $U \neq \emptyset$ do
- 4: select an *S* ∈ \mathcal{F} that maximizes $|S \cap U|$.
- 5: $U = U S$.
- 6: $\mathscr{L} = \mathscr{L} \cup \{S\}$
- 7: return \mathscr{L} .

 $($ \Box $)$ $($ \Box $)$

 $E = \Omega Q$

Analysis

Theorem 1

Greedy-Set-Cover is a polynomial-time ρ(*n*)−approximation algorithm, where $\rho(n) = H(\max\{|S| : S \in \mathcal{F}\})$. (We denote the *d*th harmonic number $H_d = \sum_{i=1}^d 1/i$ by $H(d)$.)

イロト イタト イミト イヨトー

画 \bigcirc

Analysis

Theorem 1

Greedy-Set-Cover is a polynomial-time ρ(*n*)−approximation algorithm, where $\rho(n) = H(\max\{|S| : S \in \mathcal{F}\})$. (We denote the *d*th harmonic number $H_d = \sum_{i=1}^d 1/i$ by $H(d)$.)

Corollary 2

Greedy-Set-Cover is a polynomial-time $(ln |X| + 1)$ -approximation algorithm.

23 / 28

イロト イタト イミト イヨトー

画 A

Greedy Performs Badly

24 / 28

 $\mathbf{A} \equiv \mathbf{B} + \mathbf{A} \pmod{2} \mathbf{B} + \mathbf{A} \pmod{2} \mathbf{B} + \mathbf{B}$

 OQ 目

Outline

- **•** [History](#page-2-0)
- [NP Optimization](#page-3-0)
- [Definition of Approximation](#page-7-0)

Ξ

Problem

Instance: Given a set of *n* items, each with profit p_i and size s_i , and a knapsack with size bound $B(B > s_i)$. **Solution:** A subset of items $S \subset [n]$ that subject to the constraint $\sum_{i\in S} s_i \leq B$. Measure: Total profit of the chosen subset, ∑*i*∈*^S pⁱ* .

イロト イタト イミト イヨトー

画 \mathcal{O}

Greedy Algorithm

Greedy Algorithm?

- 1. Sort items in non-increasing order of $\frac{P_i}{S_i}$
- 2. Greedily pick items in above order.

Ξ OQ

Greedy Algorithm

Greedy Algorithm?

- 1. Sort items in non-increasing order of $\frac{P_i}{S_i}$
- 2. Greedily pick items in above order.

Consider the following input:

- An item with size 1 and profit 2
- An item with size *B* and profit *B*

Greedy Algorithm

Greedy Algorithm?

- 1. Sort items in non-increasing order of $\frac{P_i}{S_i}$
- 2. Greedily pick items in above order.

Consider the following input:

- An item with size 1 and profit 2
- An item with size *B* and profit *B*

Our greedy algorithm will only pick the small item, making this a pretty bad approximation algorithm

 Ω

Greedy Algorithm

Greedy Algorithm Redux

- 1. Sort items in non-increasing order of $\frac{P_i}{S_i}$
- 2. Greedily add items until we hit an item a_i that is too big. $(\sum_{k=1}^{i} s_i > B)$
- 3. Pick the better of $\{a_1, a_2, ..., a_{i-1}\}$ and a_i .

Greedy Algorithm

Greedy Algorithm Redux

- 1. Sort items in non-increasing order of $\frac{P_i}{S_i}$
- 2. Greedily add items until we hit an item a_i that is too big. $(\sum_{k=1}^{i} s_i > B)$
- 3. Pick the better of $\{a_1, a_2, ..., a_{i-1}\}$ and a_i .

Greedy Algorithm Redux is a 2−*approximation* for the knapsack problem.

Actually, we can achieve $(1+\varepsilon)$ -approximation for any $\varepsilon > 0$ based on Dynamic Programming.

KEIK (@IKKEIK EN EN 1990)